login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303974
Regular triangle where T(n,k) is the number of aperiodic multisets of size k that fit within some normal multiset of size n.
5
1, 2, 1, 3, 3, 3, 4, 6, 10, 6, 5, 10, 22, 23, 15, 6, 15, 40, 57, 62, 27, 7, 21, 65, 115, 165, 129, 63, 8, 28, 98, 205, 356, 385, 318, 120, 9, 36, 140, 336, 676, 914, 1005, 676, 252, 10, 45, 192, 518, 1176, 1885, 2524, 2334, 1524, 495, 11, 55, 255, 762, 1918, 3528, 5495, 6319, 5607, 3261, 1023
OFFSET
1,2
COMMENTS
A multiset is normal if it spans an initial interval of positive integers. It is aperiodic if its multiplicities are relatively prime.
LINKS
FORMULA
T(n,k) = Sum_{d|k} mu(k/d) * Sum_{i=1..d} binomial(d-1, i-1)*binomial(n-k+i, i). - Andrew Howroyd, Sep 18 2018
EXAMPLE
Triangle begins:
1
2 1
3 3 3
4 6 10 6
5 10 22 23 15
6 15 40 57 62 27
7 21 65 115 165 129 63
8 28 98 205 356 385 318 120
9 36 140 336 676 914 1005 676 252
The a(4,3) = 10 multisets: (112), (113), (122), (123), (124), (133), (134), (223), (233), (234).
The a(5,4) = 23 multisets:
(1112), (1222),
(1113), (1123), (1223), (1233), (1333), (2223), (2333),
(1124), (1134), (1224), (1234), (1244), (1334), (1344), (2234), (2334), (2344),
(1235), (1245), (1345), (2345).
MATHEMATICA
allnorm[n_Integer]:=Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1];
Table[Length/@GatherBy[Select[Union@@Rest/@Subsets/@allnorm[n], GCD@@Length/@Split[#]===1&], Length], {n, 10}]
PROG
(PARI) T(n, k)={sumdiv(k, d, moebius(k/d)*sum(i=1, d, binomial(d-1, i-1)*binomial(n-k+i, i)))} \\ Andrew Howroyd, Sep 18 2018
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, May 03 2018
EXTENSIONS
Terms a(56) and beyond from Andrew Howroyd, Sep 18 2018
STATUS
approved