login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303551
Number of aperiodic multisets of compositions of total weight n.
6
1, 2, 6, 15, 41, 95, 243, 567, 1366, 3189, 7532, 17428, 40590, 93465, 215331, 493150, 1127978, 2569049, 5841442, 13240351, 29953601, 67596500, 152258270, 342235866, 767895382, 1719813753, 3845442485, 8584197657, 19133459138, 42583565928, 94641591888
OFFSET
1,2
COMMENTS
A multiset is aperiodic if its multiplicities are relatively prime.
LINKS
FORMULA
a(n) = Sum_{d|n} mu(d) * A034691(n/d).
EXAMPLE
The a(4) = 15 aperiodic multisets of compositions are:
{4}, {31}, {22}, {211}, {13}, {121}, {112}, {1111},
{1,3}, {1,21}, {1,12}, {1,111}, {2,11},
{1,1,2}, {1,1,11}.
Missing from this list are {1,1,1,1}, {2,2}, and {11,11}.
MAPLE
with(numtheory):
b:= proc(n) option remember; `if`(n=0, 1, add(add(
d*2^(d-1), d=divisors(j))*b(n-j), j=1..n)/n)
end:
a:= n-> add(mobius(d)*b(n/d), d=divisors(n)):
seq(a(n), n=1..35); # Alois P. Heinz, Apr 26 2018
MATHEMATICA
nn=20;
ser=Product[1/(1-x^n)^2^(n-1), {n, nn}]
Table[Sum[MoebiusMu[d]*SeriesCoefficient[ser, {x, 0, n/d}], {d, Divisors[n]}], {n, 1, nn}]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(u=EulerT(vector(n, n, 2^(n-1)))); vector(n, n, sumdiv(n, d, moebius(d)*u[n/d]))} \\ Andrew Howroyd, Sep 15 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 26 2018
STATUS
approved