login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of aperiodic multisets of compositions of total weight n.
6

%I #11 Sep 17 2018 03:17:13

%S 1,2,6,15,41,95,243,567,1366,3189,7532,17428,40590,93465,215331,

%T 493150,1127978,2569049,5841442,13240351,29953601,67596500,152258270,

%U 342235866,767895382,1719813753,3845442485,8584197657,19133459138,42583565928,94641591888

%N Number of aperiodic multisets of compositions of total weight n.

%C A multiset is aperiodic if its multiplicities are relatively prime.

%H Andrew Howroyd, <a href="/A303551/b303551.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = Sum_{d|n} mu(d) * A034691(n/d).

%e The a(4) = 15 aperiodic multisets of compositions are:

%e {4}, {31}, {22}, {211}, {13}, {121}, {112}, {1111},

%e {1,3}, {1,21}, {1,12}, {1,111}, {2,11},

%e {1,1,2}, {1,1,11}.

%e Missing from this list are {1,1,1,1}, {2,2}, and {11,11}.

%p with(numtheory):

%p b:= proc(n) option remember; `if`(n=0, 1, add(add(

%p d*2^(d-1), d=divisors(j))*b(n-j), j=1..n)/n)

%p end:

%p a:= n-> add(mobius(d)*b(n/d), d=divisors(n)):

%p seq(a(n), n=1..35); # _Alois P. Heinz_, Apr 26 2018

%t nn=20;

%t ser=Product[1/(1-x^n)^2^(n-1),{n,nn}]

%t Table[Sum[MoebiusMu[d]*SeriesCoefficient[ser,{x,0,n/d}],{d,Divisors[n]}],{n,1,nn}]

%o (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}

%o seq(n)={my(u=EulerT(vector(n, n, 2^(n-1)))); vector(n, n, sumdiv(n, d, moebius(d)*u[n/d]))} \\ _Andrew Howroyd_, Sep 15 2018

%Y Cf. A000740, A000837, A007716, A007916, A034691, A100953, A255906, A269134, A301700, A303386, A303431, A303546, A303552.

%K nonn

%O 1,2

%A _Gus Wiseman_, Apr 26 2018