Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Sep 18 2018 16:59:24
%S 1,2,1,3,3,3,4,6,10,6,5,10,22,23,15,6,15,40,57,62,27,7,21,65,115,165,
%T 129,63,8,28,98,205,356,385,318,120,9,36,140,336,676,914,1005,676,252,
%U 10,45,192,518,1176,1885,2524,2334,1524,495,11,55,255,762,1918,3528,5495,6319,5607,3261,1023
%N Regular triangle where T(n,k) is the number of aperiodic multisets of size k that fit within some normal multiset of size n.
%C A multiset is normal if it spans an initial interval of positive integers. It is aperiodic if its multiplicities are relatively prime.
%H Andrew Howroyd, <a href="/A303974/b303974.txt">Table of n, a(n) for n = 1..1275</a>
%F T(n,k) = Sum_{d|k} mu(k/d) * Sum_{i=1..d} binomial(d-1, i-1)*binomial(n-k+i, i). - _Andrew Howroyd_, Sep 18 2018
%e Triangle begins:
%e 1
%e 2 1
%e 3 3 3
%e 4 6 10 6
%e 5 10 22 23 15
%e 6 15 40 57 62 27
%e 7 21 65 115 165 129 63
%e 8 28 98 205 356 385 318 120
%e 9 36 140 336 676 914 1005 676 252
%e The a(4,3) = 10 multisets: (112), (113), (122), (123), (124), (133), (134), (223), (233), (234).
%e The a(5,4) = 23 multisets:
%e (1112), (1222),
%e (1113), (1123), (1223), (1233), (1333), (2223), (2333),
%e (1124), (1134), (1224), (1234), (1244), (1334), (1344), (2234), (2334), (2344),
%e (1235), (1245), (1345), (2345).
%t allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
%t Table[Length/@GatherBy[Select[Union@@Rest/@Subsets/@allnorm[n],GCD@@Length/@Split[#]===1&],Length],{n,10}]
%o (PARI) T(n,k)={sumdiv(k, d, moebius(k/d)*sum(i=1, d, binomial(d-1, i-1)*binomial(n-k+i, i)))} \\ _Andrew Howroyd_, Sep 18 2018
%Y Row sums are A303976.
%Y Cf. A000740, A000837, A001597, A007716, A007916, A027941, A178472, A210554, A301700, A303431, A303546, A303551, A303945.
%K nonn,tabl
%O 1,2
%A _Gus Wiseman_, May 03 2018
%E Terms a(56) and beyond from _Andrew Howroyd_, Sep 18 2018