login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341147
Number of partitions of n into 10 distinct prime powers (including 1).
1
1, 0, 0, 1, 1, 1, 2, 1, 3, 3, 3, 4, 7, 5, 9, 10, 12, 10, 17, 17, 23, 24, 29, 32, 44, 40, 53, 57, 71, 71, 91, 90, 113, 117, 141, 148, 181, 181, 217, 231, 268, 276, 327, 340, 397, 412, 472, 493, 571, 590, 671, 710, 794, 831, 934, 981, 1094, 1150, 1271, 1345, 1484, 1556, 1706
OFFSET
63,7
MAPLE
q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
b:= proc(n, i, t) option remember; `if`(n=0,
`if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
`if`(q(i), b(n-i, min(n-i, i-1), t-1), 0)))
end:
a:= n-> b(n$2, 10):
seq(a(n), n=63..125); # Alois P. Heinz, Feb 05 2021
MATHEMATICA
q[n_] := q[n] = Length[FactorInteger[n]] < 2;
b[n_, i_, t_] := b[n, i, t] = If[n == 0,
If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
If[q[i], b[n - i, Min[n - i, i - 1], t - 1], 0]]];
a[n_] := b[n, n, 10];
Table[a[n], {n, 63, 125}] (* Jean-François Alcover, Mar 01 2022, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 05 2021
STATUS
approved