OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..220
FORMULA
a(n) ~ 2^n * n^n / (exp(n) * G^(n + 1/2)), where G is the Catalan constant A006752. - Vaclav Kotesovec, Oct 02 2020
EXAMPLE
O.g.f: A(x) = 1 + x + 3*x^2 + 15*x^3 + 113*x^4 + 1105*x^5 + 13219*x^6 + 187103*x^7 + 3058113*x^8 + 56675297*x^9 + 1174295267*x^10 + ...
such that
A(x) = 1 + x + x*tan(3*arctan(x)) + x*tan(3*arctan(x))*tan(5*arctan(x)) + x*tan(3*arctan(x))*tan(5*arctan(x))*tan(7*arctan(x)) + x*tan(3*arctan(x))*tan(5*arctan(x))*tan(7*arctan(x))*tan(9*arctan(x)) + ...
PROG
(PARI) {a(n)=local(X=x+x*O(x^n), Gf); Gf=sum(m=0, n, prod(k=1, m, tan((2*k-1)*atan(X)))); polcoeff(Gf, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 28 2018
STATUS
approved