Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Jan 07 2025 02:00:31
%S 1,1,3,15,113,1153,15125,245829,4815403,111308699,2985997351,
%T 91712874487,3189130896077,124366296990757,5395176819674205,
%U 258547307299130037,13603419571939001827,781604484498111072195,48806254671145521802863,3298007680091577596528415
%N Number of pairs of partitions of {1,2,...,n} whose meet is the partition {{1}, {2}, ..., {n}}.
%H Alois P. Heinz, <a href="/A059849/b059849.txt">Table of n, a(n) for n = 0..325</a>
%H P. J. Cameron, D. A. Gewurz and F. Merola, <a href="http://www.maths.qmw.ac.uk/~pjc/preprints/product.pdf">Product action</a>, Discrete Math., 308 (2008), 386-394.
%H E. R. Canfield, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v8i1r15">Meet and join in the partition lattice</a>, Electronic Journal of Combinatorics, 8 (2001) R15.
%H B. Pittel, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v7i1r5">Where the typical set partitions meet and join</a>, Electronic Journal of Combinatorics, 7 (2000) R5.
%H Frank Simon, <a href="https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-101154">Algebraic Methods for Computing the Reliability of Networks</a>, Dissertation, Doctor Rerum Naturalium (Dr. rer. nat.), Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden, 2012. - _N. J. A. Sloane_, Jan 04 2013
%F E.g.f. M(x) satisfies the equation M(exp(x)-1) = Sum_{n>=0} (B_n)^2 * x^n/n!, where B_n is the n-th Bell number (A000110).
%F E.g.f.: Sum_{n>=0} exp( (1+x)^n - 2 ) / n!. - _Paul D. Hanna_, Jul 24 2018
%F a(n) = Sum_{k=0..n} Stirling1(n, k)*Bell(k)^2. - _Vladeta Jovovic_, Oct 01 2003
%e a(2) = 3 because there are two partitions of {1,2} and of the four possible pairs, only the pair ( {{1,2}}, {{1,2}} ) fails to have meet equal to {{1},{2}}.
%t a[n_] := Sum[StirlingS1[n, k]*BellB[k]^2, {k, 0, n}]; Array[a, 20] (* _Robert G. Wilson v_, Jul 24 2018 *)
%o (PARI) /* From Vladeta Jovovic's formula: */
%o {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
%o {Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)}
%o {a(n)=sum(k=0, n, Stirling1(n, k)*Bell(k)^2)}
%Y Cf. Bell numbers A000110. Also A007311 and Stirling numbers of the second kind, A000225.
%K nonn,changed
%O 0,3
%A E. R. Canfield (erc(AT)cs.uga.edu), Feb 26 2001
%E More terms from _Vladeta Jovovic_, Mar 04 2001