login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338709
Number of (undirected) paths in C_3 X P_n.
5
6, 129, 1209, 8856, 57522, 348945, 2031525, 11531712, 64438638, 356590161, 1961459841, 10749416568, 58777575354, 320956083777, 1751147966157, 9549634751424, 52062358139670, 283782668909793, 1546691543230473, 8429380058864280, 45938035123043586, 250345837703068209
OFFSET
1,1
LINKS
FORMULA
Empirical g.f.: 3*x*(2 + 15*x - 53*x^2 + 89*x^3 - 37*x^4) / ((1 - x)^2 * (1 - 3*x)^2 * (1 - 6*x + 3*x^2)). - Vaclav Kotesovec, Dec 19 2020
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
def make_CnXPk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
grids.append((i + (n - 1) * k, i))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A(start, goal, n, k):
universe = make_CnXPk(n, k)
GraphSet.set_universe(universe)
paths = GraphSet.paths(start, goal)
return paths.len()
def B(n, k):
m = k * n
s = 0
for i in range(1, m):
for j in range(i + 1, m + 1):
s += A(i, j, n, k)
return s
def A338709(n):
return B(3, n)
print([A338709(n) for n in range(1, 11)])
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 18 2020
STATUS
approved