login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338706
Number of 2-linear trees on n nodes.
4
0, 0, 0, 0, 0, 1, 3, 10, 24, 56, 114, 224, 411, 733, 1252, 2091, 3393, 5408, 8440, 12982, 19650, 29388, 43394, 63430, 91754, 131584, 187057, 263932, 369624, 514253, 710838, 976876, 1334828, 1814492, 2454011, 3303436, 4426627, 5906599, 7848883, 10389557
OFFSET
1,7
COMMENTS
A k-linear tree is a tree with exactly k vertices of degree 3 or higher all of which lie on a path. - Andrew Howroyd, Dec 17 2020
Empirically the partial sums of A000147. - Sean A. Irvine, Jul 11 2022
LINKS
Tanay Wakhare, Eric Wityk, and Charles R. Johnson, The proportion of trees that are linear, Discrete Mathematics, 343.10 (2020): 112008. Also arXiv:1901.08502v2. See Tables 1 and 2 (but beware errors).
FORMULA
G.f.: ((x*(P(x) - 1/(1-x)))^2 + x^2*(P(x^2) - 1/(1-x^2)))/(2*(1-x)) where P(x) is the g.f. of A000041. - Andrew Howroyd, Dec 17 2020
EXAMPLE
The a(6) = 1 tree is:
o o
| |
o---o---o---o
PROG
(PARI) seq(n)=my(p=1/(eta(x + O(x^(n-3))))); Vec(((x*(p - 1/(1-x)))^2 + x^2*(subst(p, x, x^2) - 1/(1-x^2)))/(2*(1-x)), -n) \\ Andrew Howroyd, Dec 17 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 05 2020, using data supplied by Eric Wityk
EXTENSIONS
Terms a(31) and beyond from Andrew Howroyd, Dec 17 2020
STATUS
approved