login
A338706
Number of 2-linear trees on n nodes.
6
0, 0, 0, 0, 0, 1, 3, 10, 24, 56, 114, 224, 411, 733, 1252, 2091, 3393, 5408, 8440, 12982, 19650, 29388, 43394, 63430, 91754, 131584, 187057, 263932, 369624, 514253, 710838, 976876, 1334828, 1814492, 2454011, 3303436, 4426627, 5906599, 7848883, 10389557
OFFSET
1,7
COMMENTS
A k-linear tree is a tree with exactly k vertices of degree 3 or higher all of which lie on a path. - Andrew Howroyd, Dec 17 2020
Empirically the partial sums of A000147. - Sean A. Irvine, Jul 11 2022
LINKS
Tanay Wakhare, Eric Wityk, and Charles R. Johnson, The proportion of trees that are linear, Discrete Mathematics 343.10 (2020): 112008. Also Corrigendum and preprint arXiv:1901.08502 [math.CO], 2019-2020. See Tables 1 and 2 (but beware errors).
FORMULA
G.f.: ((x*(P(x) - 1/(1-x)))^2 + x^2*(P(x^2) - 1/(1-x^2)))/(2*(1-x)) where P(x) is the g.f. of A000041. - Andrew Howroyd, Dec 17 2020
EXAMPLE
The a(6) = 1 tree is:
o o
| |
o---o---o---o
PROG
(PARI) seq(n)=my(p=1/(eta(x + O(x^(n-3))))); Vec(((x*(p - 1/(1-x)))^2 + x^2*(subst(p, x, x^2) - 1/(1-x^2)))/(2*(1-x)), -n) \\ Andrew Howroyd, Dec 17 2020
CROSSREFS
Column k=2 of A380363 and A238415.
Sequence in context: A062446 A053208 A355024 * A338710 A336516 A286209
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 05 2020, using data supplied by Eric Wityk
EXTENSIONS
Terms a(31) and beyond from Andrew Howroyd, Dec 17 2020
STATUS
approved