login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338704
Products p*q*r of three distinct primes such that (p*q) mod r, (p*r) mod q and (q*r) mod p are all prime.
2
1023, 1885, 2635, 3857, 4433, 4623, 5883, 7579, 7611, 8987, 9447, 11607, 13949, 14053, 14573, 14839, 14965, 15189, 15265, 16287, 17507, 19599, 20661, 21535, 22119, 23433, 24827, 24963, 25359, 25517, 26781, 30385, 30709, 31537, 34715, 36499, 38121, 38315, 38533, 39479, 39867, 41287, 41915, 42107
OFFSET
1,1
LINKS
EXAMPLE
a(3)=2635 is a term because 2635=5*17*31 with (5*17) mod 31 = 23, (5*31) mod 17 = 2 and (17*31) mod 5 = 2 all prime.
MAPLE
N:= 10^5: # for terms <= N
P:= select(isprime, [seq(i, i=3..floor(sqrt(N)), 2)]):
R:= NULL:
for i from 1 to nops(P) do
p:= P[i];
for j from 1 to i-1 do
q:= P[j];
if 3*q*p > N then break fi;
for k from 1 to j-1 do
r:= P[k];
if r*q*p > N or r > p*q then break fi;
if isprime(p*q mod r) and isprime(p*r mod q) and isprime(q*r mod p) then
R:=R, p*q*r;
fi
od od od:
sort([R]);
MATHEMATICA
Block[{a = {}, nn = 42500}, Do[Do[Do[If[And[Length@ Union[{#1, #2, #3}] == 3, AllTrue[{Mod[#1 #2, #3], Mod[#1 #3, #2], Mod[#2 #3, #1]}, PrimeQ]], AppendTo[a, #1 #2 #3]] & @@ {Prime[i], Prime[j], Prime[k]}, {k, j - 1}], {j, i - 1}], {i, PrimePi@ Floor[Sqrt[nn]]}]; TakeWhile[Union@ a, # <= nn &]] (* Michael De Vlieger, Nov 05 2020 *)
Select[Union[Times@@@Select[Subsets[Prime[Range[50]], {3}], AllTrue[{ Mod[ #[[1]]#[[2]], #[[3]]], Mod[#[[2]]#[[3]], #[[1]]], Mod[#[[1]]#[[3]], #[[2]]]}, PrimeQ]&]], #<=50000&] (* Harvey P. Dale, Aug 11 2021 *)
CROSSREFS
Contains A338705.
Sequence in context: A031969 A166512 A038461 * A158421 A023060 A223079
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Nov 05 2020
STATUS
approved