Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Jul 09 2023 12:14:48
%S 1,1,8,1,18,16,1,32,66,24,1,50,192,146,32,1,72,450,608,258,40,1,98,
%T 912,1970,1408,402,48,1,128,1666,5336,5890,2720,578,56,1,162,2816,
%U 12642,20256,14002,4672,786,64,1,200,4482,27008,59906,58728,28610,7392,1026,72
%N Square array A(n,k) read by antidiagonals: row n gives coordination sequence for lattice C_n.
%H G. C. Greubel, <a href="/A103884/b103884.txt">Antidiagonals n = 2..50, flattened</a>
%H M. Baake and U. Grimm, <a href="http://arXiv.org/abs/cond-mat/9706122">Coordination sequences for root lattices and related graphs</a>, arXiv:cond-mat/9706122 [cond-mat.stat-mech], 1997.
%H J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).
%H Joan Serra-Sagrista, <a href="https://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
%F A(n,k) = Sum_{i=1..2*k} 2^i*C(n, i)*C(2*k-1, i-1), A(n,0) = 1 (array).
%F G.f. of n-th row: (Sum_{i=0..n} C(2*n, 2*i)*x^i)/(1-x)^n.
%F T(n, k) = A(n-k, k) (antidiagonals).
%F T(n, n-2) = A022144(n-2).
%F T(n, k) = 2*(n-k)*Hypergeometric2F1([1+k-n, 1-2*k], [2], 2), T(n, 0) = 1, for n >= 2, 0 <= k <= n-2. - _G. C. Greubel_, May 23 2023
%F From _Peter Bala_, Jul 09 2023: (Start)
%F T(n,k) = [x^k] Chebyshev_T(n, (1 + x)/(1 - x)), where Chebyshev_T(n, x) denotes the n-th Chebyshev polynomial of the first kind.
%F T(n+1,k) = T(n+1,k-1) + 2*T(n,k) + 2*T(n,k-1) + T(n-1,k) - T(n-1,k-1). (End)
%e Array begins:
%e 1, 8, 16, 24, 32, 40, 48, ... A022144;
%e 1, 18, 66, 146, 258, 402, 578, ... A010006;
%e 1, 32, 192, 608, 1408, 2720, 4672, ... A019560;
%e 1, 50, 450, 1970, 5890, 14002, 28610, ... A019561;
%e 1, 72, 912, 5336, 20256, 58728, 142000, ... A019562;
%e 1, 98, 1666, 12642, 59906, 209762, 596610, ... A019563;
%e 1, 128, 2816, 27008, 157184, 658048, 2187520, ... A019564;
%e 1, 162, 4482, 53154, 374274, 1854882, 7159170, ... A035746;
%e 1, 200, 6800, 97880, 822560, 4780008, 21278640, ... A035747;
%e 1, 242, 9922, 170610, 1690370, 11414898, 58227906, ... A035748;
%e 1, 288, 14016, 284000, 3281280, 25534368, 148321344, ... A035749;
%e ...
%e Antidiagonals, T(n, k), begins as:
%e 1;
%e 1, 8;
%e 1, 18, 16;
%e 1, 32, 66, 24;
%e 1, 50, 192, 146, 32;
%e 1, 72, 450, 608, 258, 40;
%e 1, 98, 912, 1970, 1408, 402, 48;
%e 1, 128, 1666, 5336, 5890, 2720, 578, 56;
%t nmin = 2; nmax = 11; t[n_, 0]= 1; t[n_, k_]:= 2n*Hypergeometric2F1[1-2k, 1-n, 2, 2]; tnk= Table[ t[n, k], {n, nmin, nmax}, {k, 0, nmax-nmin}]; Flatten[ Table[ tnk[[ n-k+1, k ]], {n, 1, nmax-nmin+1}, {k, 1, n} ] ] (* _Jean-François Alcover_, Jan 24 2012, after formula *)
%o (Magma)
%o A103884:= func< n,k | k eq 0 select 1 else 2*(&+[2^j*Binomial(n-k,j+1)*Binomial(2*k-1,j) : j in [0..2*k-1]]) >;
%o [A103884(n,k): k in [0..n-2], n in [2..12]]; // _G. C. Greubel_, May 23 2023
%o (SageMath)
%o def A103884(n,k): return 1 if k==0 else 2*sum(2^j*binomial(n-k,j+1)*binomial(2*k-1,j) for j in range(2*k))
%o flatten([[A103884(n,k) for k in range(n-1)] for n in range(2,13)]) # _G. C. Greubel_, May 23 2023
%Y Rows include A022144, A010006, A019560, A019561, A019562, A019563, A019564, A035746, A035747, A035748, A035749, A035750 - A035787.
%Y Columns include A001105, A035598, A035600, A035602, A035604, A035606.
%Y Main diagonal is in A103885.
%Y Cf. A103881, A103993, A108998.
%K nonn,tabl
%O 2,3
%A _Ralf Stephan_, Feb 20 2005
%E Definition clarified by _N. J. A. Sloane_, May 25 2023