login
A085812
Sum(sum(binomial(i,j),i=n..2*n),j=0..n).
4
1, 5, 22, 91, 366, 1454, 5748, 22691, 89590, 354010, 1400268, 5544334, 21973420, 87158972, 345977832, 1374249251, 5461704870, 21717305762, 86391846492, 343800647066, 1368639516420, 5450093895812, 21708897213912, 86492537630606
OFFSET
0,2
COMMENTS
As the definition indicates, each term is the sum of numbers from Pascal's Triangle in an (n+1) X (n+1) square arrangement.
Example for a(2):
1
1 1
|1 2 1 |
|1 3 3 |1
|1 4 6 |4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
...
and
(1+2+1) + (1+3+3) + (1+4+6) = 22 = a(2). Similarly, a(1) = (1+1)+(1+2) = 5. - John Molokach, Sep 17 2013
LINKS
FORMULA
a(n) = 4^n - 2^n + C(2*n+2, n+1)/2. - Vaclav Kotesovec, Oct 28 2012
(n+1)*a(n) +2*(-6*n-1)*a(n-1) +4*(13*n-9)*a(n-2) +8*(-12*n+19)*a(n-3) +32*(2*n-5)*a(n-4)=0. - R. J. Mathar, Oct 01 2013
EXAMPLE
a(1)=binomial(1,0)+binomial(2,0)+binomial(1,1)+binomial(2,1)=1+1+1+2=5
MAPLE
a := n->add(add(binomial(i, j), i=n..2*n), j=0..n); seq(a(n), n=0..25);
MATHEMATICA
Table[4^n-2^n+Binomial[2*n+2, n+1]/2, {n, 0, 20}] (* Vaclav Kotesovec, Oct 28 2012 *)
PROG
(PARI) a(n)=4^n-2^n+binomial(2*n+2, n+1)/2; \\ Joerg Arndt, May 10 2013
CROSSREFS
Sequence in context: A208736 A050185 A216597 * A172061 A211973 A053297
KEYWORD
nonn,easy
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jul 25 2003
STATUS
approved