login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208736
Number of nonisomorphic graded posets with 0 and 1 and non-uniform Hasse graph of rank n, with exactly 2 elements of each rank level between 0 and 1.
2
0, 0, 0, 1, 5, 22, 91, 361, 1392, 5265, 19653, 72694, 267179, 977593, 3565600, 12975457, 47142021, 171075606, 620303547, 2247803785, 8141857808, 29481675889, 106728951109, 386314552438, 1398132674955, 5059626441177, 18308871648576, 66249898660801
OFFSET
0,5
COMMENTS
Uniform used in the sense of Retakh, Serconek and Wilson. We use Stanley's definition of graded poset: all maximal chains have the same length n (which also implies all maximal elements have maximal rank.)
REFERENCES
R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
LINKS
V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
Wikipedia, Graded poset
FORMULA
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4), a(2) = 0, a(3) = 1, a(4) = 5, a(5) = 22.
G.f.: (x^3 - 3*x^4 + 3*x^5)/(1 - 8*x + 21*x^2 - 20*x^3 + 5*x^4); (x^3 * (1 - 3*x + 3*x^2))/((1 - 3*x + x^2)*(1 - 5*x + 5*x^2)) .
a(n) = A081567(n-2) - A001519(n-1).
MATHEMATICA
Join[{0, 0}, LinearRecurrence[{8, -21, 20, -5}, {0, 1, 5, 22}, 40]]
PROG
(Python)
def a(n, d={0:0, 1:0, 2:0, 3:1, 4:5, 5:22}):
if n in d:
return d[n]
d[n]=8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4)
return d[n]
KEYWORD
nonn,easy
AUTHOR
David Nacin, Mar 01 2012
STATUS
approved