login
A326171
Let z be a sequence of distinct Gaussian integers such that z(1) = 0, z(2) = 2+i (where i denotes the imaginary unit), for n > 1, z(n+1) the Gaussian integer with least norm at one knight move from z(n) (in case of a tie, choose the value such that Im(z(n+1)/z(n))>0); a(n) is the imaginary part of z(n).
2
0, 1, -1, 1, -1, 0, 1, -1, 1, 0, -2, -1, 1, 2, 0, -2, -1, -3, -4, -2, 0, 2, 1, -1, -3, -2, 0, 1, 2, 3, 4, 3, 2, 0, 2, 3, 2, 0, -2, -3, -2, -1, -3, -4, -5, -3, -1, 1, 3, 4, 3, 2, 0, -2, -3, -4, -3, -1, 1, 2, 3, 4, 3, 1, -1, -3, -4, -5, -4, -3, -1, 1, 2, 0, -2
OFFSET
1,11
COMMENTS
See A326170 for the real part and additional comments.
PROG
(PARI) See Links section.
CROSSREFS
Cf. A326170.
Sequence in context: A055138 A177717 A155997 * A359393 A123223 A374191
KEYWORD
sign,fini
AUTHOR
Rémy Sigrist, Jun 10 2019
STATUS
approved