login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155994
A triangle of polynomial coefficients: p(x,n)=-(ChebyshevU[n, x] - ((x + 1)^n - (1 - x)^n)); sp(x,n) = p(x, n) + x^n*p(1/x, n).
0
-2, -3, 8, -3, -6, 10, 10, -6, -17, 16, 24, 16, -17, -30, 4, 52, 52, 4, -30, -63, 24, 56, 80, 56, 24, -63, -126, 22, 234, -10, -10, 234, 22, -126, -257, 32, 488, 224, -480, 224, 488, 32, -257, -510, 8, 1096, 328, -420, -420, 328, 1096, 8, -510, -1023, 40, 2244, 480
OFFSET
0,1
COMMENTS
Row sums are:
{-2, 0, 2, 8, 22, 52, 114, 240, 494, 1004, 2026,...}.
FORMULA
p(x,n)=-(ChebyshevU[n, x] - ((x + 1)^n - (1 - x)^n));
sp(x,n) = p(x, n) + x^n*p(1/x, n).
EXAMPLE
{-2},
{},
{-3, 8, -3},
{-6, 10, 10, -6},
{-17, 16, 24, 16, -17},
{-30, 4, 52, 52, 4, -30},
{-63, 24, 56, 80, 56, 24, -63},
{-126, 22, 234, -10, -10, 234, 22, -126},
{-257, 32, 488, 224, -480, 224, 488, 32, -257},
{-510, 8, 1096, 328, -420, -420, 328, 1096, 8, -510},
{-1023, 40, 2244, 480, -1232, 1008, -1232, 480, 2244, 40, -1023}
MATHEMATICA
p[x_, n_] =-(ChebyshevU[n, x] - ((x + 1)^n - (1 - x)^n));
sp[x_, n_] = p[x, n] + x^n*p[1/x, n];
Table[FullSimplify[ExpandAll[sp[x, n]]], {n, 0, 10}];
Table[CoefficientList[FullSimplify[ExpandAll[sp[x, n]]], x], {n, 0, 10}]; Q Flatten[%]
CROSSREFS
Sequence in context: A183168 A011326 A154826 * A011162 A293273 A349003
KEYWORD
sign,tabl,uned
AUTHOR
Roger L. Bagula, Feb 01 2009
STATUS
approved