login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269562
Array read by antidiagonals: T(n,m) is the number of Hamiltonian cycles in the rook graph K_n X K_m.
9
0, 0, 0, 1, 1, 1, 3, 3, 3, 3, 12, 30, 48, 30, 12, 60, 480, 1566, 1566, 480, 60, 360, 12000, 126120, 284112, 126120, 12000, 360, 2520, 430920, 18153720, 122330880, 122330880, 18153720, 430920, 2520, 20160, 21052080, 4357332000, 112777827840, 335750676480, 112777827840, 4357332000, 21052080, 20160
OFFSET
1,7
COMMENTS
Equivalently, the number of rook tours on an n X m lattice.
2*T(n,m) is divisible by (n-1)!*(m-1)!. - Andrew Howroyd, Feb 08 2021
LINKS
Eric Weisstein's World of Mathematics, Hamiltonian Cycle
Eric Weisstein's World of Mathematics, Rook Graph
FORMULA
From Andrew Howroyd, Feb 08 2021: (Start)
T(n,m) = T(m,n).
T(n,1) = (n-1)!/2 for n >= 3. (End)
EXAMPLE
Array begins:
=============================================================
n\m | 1 2 3 4 5
----+--------------------------------------------------------
1 | 0 0 1 3 12 ...
2 | 0 1 3 30 480 ...
3 | 1 3 48 1566 126120 ...
4 | 3 30 1566 284112 122330880 ...
5 | 12 480 126120 122330880 335750676480 ...
6 | 60 12000 18153720 112777827840 2190773906150400 ...
7 | 360 430920 4357332000 ...
...
CROSSREFS
Column 1 is A001710(n-1) for n >= 3.
Columns 2..4 are A276356, A341498, A341499.
Main diagonal is A269561.
Sequence in context: A349924 A170858 A024725 * A214730 A153491 A287505
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 29 2016
STATUS
approved