login
A070233
Let u(k), v(k), w(k) satisfy the recursions u(1) = v(1) = w(1) = 1, u(k+1) = u(k) + v(k) + w(k), v(k+1) = u(k)*v(k) + v(k)*w(k) + w(k)*u(k), and w(k+1) = u(k)*v(k)*w(k) for k >= 1; then a(n) = w(n).
8
1, 1, 9, 945, 8876385, 3689952451492545, 98367948795841301790914258556831105, 3882894052327309905582682317031276840071039865528864289025562807872336355445505
OFFSET
1,3
COMMENTS
Next term is too large to include.
LINKS
Petros Hadjicostas, Table of n, a(n) for n = 1..11
FORMULA
Let C be the positive root of x^3 + x^2 - 2*x - 1 = 0: that is, C = 1.246979603717... = A255249. Then Lim_{n -> infinity} u(n)^(C+1)/w(n)= Lim_{n -> infinity} v(n)^C/w(n) = Lim_{n -> infinity} u(n)^B/v(n) = 1 with B = C + 1 - 1/(1 + C) = 1.8019377... = A160389. [corrected by Vaclav Kotesovec, May 11 2020]
a(n) ~ gw^((C + 1)^n), where C is defined above and gw = 1.321128752475732548... The relation between constants gu (see A070231), gv (see A070234) and gw is gu^(1 + C) = gv^C = gw. - Vaclav Kotesovec, May 11 2020
MATHEMATICA
u[1] = 1; v[1] = 1; a[1] = 1; u[k_] := u[k] = u[k - 1] + v[k - 1] + a[k - 1]; v[k_] := v[k] = u[k - 1]*v[k - 1] + v[k - 1]*a[k - 1] + a[k - 1]*u[k - 1]; a[k_] := a[k] = u[k - 1]*v[k - 1]*a[k - 1]; Table[a[n], {n, 1, 9}] (* Vaclav Kotesovec, May 11 2020 *)
PROG
(PARI) lista(nn) = {my(u = vector(nn)); my(v = vector(nn)); my(w = vector(nn)); u[1] = 1; v[1] = 1; w[1] = 1; for (n=2, nn, u[n] = u[n-1] + v[n-1] + w[n-1]; v[n] = u[n-1]*v[n-1] + v[n-1]*w[n-1] + w[n-1]*u[n-1]; w[n] = u[n-1]*v[n-1]*w[n-1]; ); w; } \\ Petros Hadjicostas, May 11 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, May 08 2002
STATUS
approved