Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Sep 02 2024 01:18:51
%S 1,2,2,6,30,330,13530,5019630,69777876630,351229105131280530,
%T 24509789089304573335878465330,
%U 8608552999157278550998626549630446732052243030
%N a(1) = 1, a(2) = 2, and a(n+1) = a(n) * sum of all previous terms up to a(n-1) for n >= 2.
%C From _Petros Hadjicostas_, May 11 2020: (Start)
%C _R. J. Mathar_'s conjecture is correct and this is identical to A064847 starting at n = 3. To see why this is the case, consider the sequences u(n) and v(n) defined by u(1) = v(1) = 1, and u(k+1) = u(k) + v(k), v(k+1) = u(k)*v(k) for k >= 1. Then u(n) = A003686(n) and v(n) = A064847(n) for n >= 1.
%C Then v(n) = u(n+1) - u(n), and thus Sum_{k=1..n-1} v(k) = u(n) - u(1) = u(n) - 1 for n >= 2. Then v(n-1) + ... + v(3) + (v(2) + 1) + v(1) = u(n) for n >= 3, and hence v(n)*(v(n-1) + ... + v(3) + (v(2) + 1) + v(1)) = u(n)*v(n) = v(n+1).
%C Since v(1) = 1 = a(1) and v(2) + 1 = 2 = a(2), the sequence (v(1), v(2) + 1, v(3), ..., v(n), ...) is identical to the current sequence. Hence, a(n) = v(n) = u(n+1) - u(n) = A003686(n+1) - A003686(n) for n >= 3. (End)
%H Petros Hadjicostas, <a href="/A094303/b094303.txt">Table of n, a(n) for n = 1..17</a>
%F Conjecture: a(n) = A003686(n+1) - A003686(n) for n >= 3. - _R. J. Mathar_, Apr 24 2007
%t nxt[{t1_,t2_,a_}]:=Module[{c=t1*a},{t1+t2,c,c}]; Join[{1},NestList[nxt,{1,2,2},10][[All,2]]] (* _Harvey P. Dale_, Aug 30 2020 *)
%o (PARI) lista(nn) = { my(va = vector(nn)); va[1] = 1; va[2] = 2; for(n=3, nn, va[n] = va[n-1]*sum(k=1, n-2, va[k]);); va; } \\ _Petros Hadjicostas_, May 11 2020
%Y See A064847 for another version.
%Y Cf. A003686, A064183, A064526, A070231, A070233, A070234.
%K nonn
%O 1,2
%A _Amarnath Murthy_, Apr 29 2004
%E More terms from _Gareth McCaughan_, Jun 10 2004