The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003309 Ludic numbers: apply the same sieve as Eratosthenes, but cross off every k-th /remaining/ number. (Formerly M0655) 82
 1, 2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 37, 41, 43, 47, 53, 61, 67, 71, 77, 83, 89, 91, 97, 107, 115, 119, 121, 127, 131, 143, 149, 157, 161, 173, 175, 179, 181, 193, 209, 211, 221, 223, 227, 233, 235, 239, 247, 257, 265, 277, 283, 287, 301, 307, 313 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Complement of A192607; A192490(a(n)) = 1. [Reinhard Zumkeller, Jul 05 2011] REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Donovan Johnson, Table of n, a(n) for n = 1..100000 David Applegate, C program for A003309 Donovan Johnson, Ludic numbers computed up to A003309(1236290) = 23000711 OEIS Wiki, Ludic numbers Popular Computing (Calabasas, CA), Sieves: Problem 43, Vol. 2 (No. 13, Apr 1974), pp. 6-7. This is Sieve #1. [Annotated and scanned copy] Rosettacode Wiki, Ludic numbers Index entries for sequences generated by sieves FORMULA From Antti Karttunen, Feb 23 2015: (Start) a(n) = A255407(A008578(n)). a(n) = A008578(n) + A255324(n). (End) MAPLE ludic:= proc(N) local i, k, S, R; S:= {\$2..N}; R:= 1; while nops(S) > 0 do k:= S[1]; R:= R, k; S:= subsop(seq(1+k*j=NULL, j=0..floor((nops(S)-1)/k)), S); od: [R]; end proc: ludic(1000); # Robert Israel, Feb 23 2015 MATHEMATICA t = Range[2, 400]; r = {1}; While[Length[t] > 0, k = First[t]; AppendTo[r, k]; t = Drop[t, {1, -1, k}]; ]; r (* Ray Chandler, Dec 02 2004 *) PROG (PARI) t=vector(399, x, x+1); r=[1]; while(length(t)>0, k=t[1]; r=concat(r, [k]); t=vector((length(t)*(k-1))\k, x, t[(x*k+k-2)\(k-1)])); r \\ Phil Carmody, Feb 07 2007 (Haskell) a003309 n = a003309_list !! (n - 1) a003309_list = 1 : f [2..] :: [Int] where f (x:xs) = x : f (map snd [(u, v) | (u, v) <- zip [1..] xs, mod u x > 0]) -- Reinhard Zumkeller, Feb 10 2014, Jul 03 2011 (Scheme) (define (A003309 n) (if (= 1 n) n (A255127bi (- n 1) 1))) ;; Code for A255127bi given in A255127. ;; Antti Karttunen, Feb 23 2015 (Python) remainders = [0] ludics = [2] N_MAX = 313 for i in range(3, N_MAX) : ludic_index = 0 while ludic_index < len(ludics) : ludic = ludics[ludic_index] remainder = remainders[ludic_index] remainders[ludic_index] = (remainder + 1) % ludic if remainders[ludic_index] == 0 : break ludic_index += 1 if ludic_index == len(ludics) : remainders.append(0) ludics.append(i) ludics = [1] + ludics print(ludics) # Alexandre Herrera, Aug 10 2023 CROSSREFS Without the initial 1 occurs as the leftmost column in arrays A255127 and A260717. Cf. A003310, A003311, A100464, A100585, A100586 (variants). Cf. A192503 (primes in sequence), A192504 (nonprimes), A192512 (number of terms <= n). Cf. A192490 (characteristic function). Cf. A192607 (complement). Cf. A260723 (first differences). Cf. A255420 (iterates of f(n) = A003309(n+1) starting from n=1). Subsequence of A302036. Cf. A237056, A237126, A237427, A235491, A255407, A255408, A255421, A255422, A260435, A260436, A260741, A260742 (permutations constructed from Ludic numbers). Cf. also A000959, A008578, A255324, A254100, A272565, A297158, A302032, A302038. Sequence in context: A198196 A139054 A290959 * A063884 A316787 A165671 Adjacent sequences: A003306 A003307 A003308 * A003310 A003311 A003312 KEYWORD nonn,easy,nice AUTHOR N. J. A. Sloane EXTENSIONS More terms from David Applegate and N. J. A. Sloane, Nov 23 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 21:08 EST 2023. Contains 367565 sequences. (Running on oeis4.)