login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192503
Ludic prime numbers.
5
2, 3, 5, 7, 11, 13, 17, 23, 29, 37, 41, 43, 47, 53, 61, 67, 71, 83, 89, 97, 107, 127, 131, 149, 157, 173, 179, 181, 193, 211, 223, 227, 233, 239, 257, 277, 283, 307, 313, 331, 337, 353, 359, 383, 389, 397, 419, 421, 431, 433, 463, 467, 503, 509, 541, 577
OFFSET
1,1
LINKS
FORMULA
A010051(a(n))*A192490(a(n)) = 1.
MATHEMATICA
a3309[nmax_] := a3309[nmax] = Module[{t = Range[2, nmax], k, r = {1}}, While[Length[t] > 0, k = First[t]; AppendTo[r, k]; t = Drop[t, {1, -1, k}]]; r];
ludicQ[n_, nmax_] /; 1 <= n <= nmax := MemberQ[a3309[nmax], n];
terms = 1000;
f[nmax_] := f[nmax] = Select[Range[nmax], ludicQ[#, nmax] && PrimeQ[#]&] // PadRight[#, terms]&;
f[nmax = terms];
f[nmax = 2 nmax];
While[f[nmax] != f[nmax/2], nmax = 2 nmax];
seq = f[nmax] (* Jean-François Alcover, Dec 10 2021, after Ray Chandler in A003309 *)
PROG
(Haskell)
a192503 n = a192503_list !! (n-1)
a192503_list = filter ((== 1) . a010051) a003309_list
(PARI) A192503(maxn, bflag=0)={my(Vw=vector(maxn, x, x+1), Vl=Vec([1]), vwn=#Vw, i, vj, L=List());
while(vwn>0, i=Vw[1]; Vl=concat(Vl, [i]);
Vw=vector((vwn*(i-1))\i, x, Vw[(x*i+i-2)\(i-1)]); vwn=#Vw);
kill(Vw); vwn=#Vl;
for(j=1, vwn, vj=Vl[j]; if(isprime(vj), listput(L, vj))); kill(Vw); vwn=#L;
if(bflag, for(i=1, vwn, print(i, " ", L[i]))); if(!bflag, return(Vec(L)));
} \\ Anatoly E. Voevudko, Feb 28 2016
CROSSREFS
Intersection of A000040 and A003309.
Cf. A192506 (neither ludic nor prime).
Sequence in context: A299956 A372629 A368732 * A040067 A181659 A040087
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 05 2011
STATUS
approved