login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192502
G.f. satisfies: A(x) = 1 + x*f(x, A(x)) where f(,) is Ramanujan's two-variable theta function.
2
1, 2, 4, 10, 36, 136, 548, 2316, 10050, 44426, 199666, 910090, 4196984, 19545844, 91791112, 434181656, 2066656564, 9891669820, 47578282002, 229858639366, 1114895656402, 5427058308018, 26503888167186, 129821343271168, 637626106479490
OFFSET
0,2
COMMENTS
Ramanujan's two-variable theta function is defined by:
f(a,b) = Sum_{n=-infinity..+infinity} a^(n*(n+1)/2) * b^(n*(n-1)/2).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
G.f. satisfies:
(1) A(x) = 1+x + x*Sum_{n>=1} (x*A(x))^(n*(n-1)/2) * (x^n + A(x)^n).
(2) A(x) = 1 + x*Product_{n>=0} (1+x*q^n)*(1+A(x)*q^n)*(1-q^(n+1)) where q=x*A(x), due to Jacobi's triple product identity.
a(n) ~ c * d^n / n^(3/2), where d = 5.2286591857647664516287778... and c = 0.4431871616898705063582... - Vaclav Kotesovec, Sep 04 2017
Formula (2) can be rewritten as the functional equation y = 1 + x*QPochhammer(-x, x*y) * QPochhammer(-y, x*y) * QPochhammer(x*y). - Vaclav Kotesovec, Jan 19 2024
EXAMPLE
G.f.: A(x) = 1 + 2*x + 4*x^2 + 10*x^3 + 36*x^4 + 136*x^5 + 548*x^6 +...
The g.f. A = A(x) satisfies:
(1) A = 1+x + x*[(x+A) + x*A*(x^2+A^2) + x^3*A^3*(x^3+A^3) + x^6*A^6*(x^4+A^4) + x^10*A^10*(x^5+A^5) +...].
(2) A = 1 + x*(1+x)*(1+A)*(1-x*A)* (1+x^2*A)*(1+x*A^2)*(1-x^2*A^2)* (1+x^3*A^2)*(1+x^2*A^3)*(1-x^3*A^3)* (1+x^4*A^3)*(1+x^3*A^4)*(1-x^4*A^4)*...
MATHEMATICA
(* Calculation of constant d: *) 1/r /. FindRoot[{s == 1 + r*QPochhammer[-r, r*s] * QPochhammer[-s, r*s] * QPochhammer[r*s], r*(-1 + s) * Derivative[0, 1][QPochhammer][-r, r*s] / QPochhammer[-r, r*s] + r^2*QPochhammer[-r, r*s] * QPochhammer[r*s] * Derivative[0, 1][QPochhammer][-s, r*s] + (-1 + s)*(-((2*Log[1 - r*s] + QPolyGamma[0, 1, r*s] + QPolyGamma[0, Log[-s]/Log[r*s], r*s]) / (s*Log[r*s])) + r*Derivative[0, 1][QPochhammer][r*s, r*s] / QPochhammer[r*s]) == 1}, {r, 1/5}, {s, 2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Jan 19 2024 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x+x*sum(m=1, sqrtint(2*n)+1, (x*A+x*O(x^n))^(m*(m-1)/2)*(x^m+A^m))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, q=x*(A+O(x^n)); A=1+x*prod(m=0, n, (1+x*q^m)*(1+A*q^m)*(1-q^(m+1))) ); polcoeff(A, n)}
CROSSREFS
Sequence in context: A188495 A038077 A006396 * A243567 A323949 A066278
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 03 2011
STATUS
approved