Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jan 19 2024 07:30:38
%S 1,2,4,10,36,136,548,2316,10050,44426,199666,910090,4196984,19545844,
%T 91791112,434181656,2066656564,9891669820,47578282002,229858639366,
%U 1114895656402,5427058308018,26503888167186,129821343271168,637626106479490
%N G.f. satisfies: A(x) = 1 + x*f(x, A(x)) where f(,) is Ramanujan's two-variable theta function.
%C Ramanujan's two-variable theta function is defined by:
%C f(a,b) = Sum_{n=-infinity..+infinity} a^(n*(n+1)/2) * b^(n*(n-1)/2).
%H Vaclav Kotesovec, <a href="/A192502/b192502.txt">Table of n, a(n) for n = 0..400</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions.</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions.</a>
%F G.f. satisfies:
%F (1) A(x) = 1+x + x*Sum_{n>=1} (x*A(x))^(n*(n-1)/2) * (x^n + A(x)^n).
%F (2) A(x) = 1 + x*Product_{n>=0} (1+x*q^n)*(1+A(x)*q^n)*(1-q^(n+1)) where q=x*A(x), due to Jacobi's triple product identity.
%F a(n) ~ c * d^n / n^(3/2), where d = 5.2286591857647664516287778... and c = 0.4431871616898705063582... - _Vaclav Kotesovec_, Sep 04 2017
%F Formula (2) can be rewritten as the functional equation y = 1 + x*QPochhammer(-x, x*y) * QPochhammer(-y, x*y) * QPochhammer(x*y). - _Vaclav Kotesovec_, Jan 19 2024
%e G.f.: A(x) = 1 + 2*x + 4*x^2 + 10*x^3 + 36*x^4 + 136*x^5 + 548*x^6 +...
%e The g.f. A = A(x) satisfies:
%e (1) A = 1+x + x*[(x+A) + x*A*(x^2+A^2) + x^3*A^3*(x^3+A^3) + x^6*A^6*(x^4+A^4) + x^10*A^10*(x^5+A^5) +...].
%e (2) A = 1 + x*(1+x)*(1+A)*(1-x*A)* (1+x^2*A)*(1+x*A^2)*(1-x^2*A^2)* (1+x^3*A^2)*(1+x^2*A^3)*(1-x^3*A^3)* (1+x^4*A^3)*(1+x^3*A^4)*(1-x^4*A^4)*...
%t (* Calculation of constant d: *) 1/r /. FindRoot[{s == 1 + r*QPochhammer[-r, r*s] * QPochhammer[-s, r*s] * QPochhammer[r*s], r*(-1 + s) * Derivative[0, 1][QPochhammer][-r, r*s] / QPochhammer[-r, r*s] + r^2*QPochhammer[-r, r*s] * QPochhammer[r*s] * Derivative[0, 1][QPochhammer][-s, r*s] + (-1 + s)*(-((2*Log[1 - r*s] + QPolyGamma[0, 1, r*s] + QPolyGamma[0, Log[-s]/Log[r*s], r*s]) / (s*Log[r*s])) + r*Derivative[0, 1][QPochhammer][r*s, r*s] / QPochhammer[r*s]) == 1}, {r, 1/5}, {s, 2}, WorkingPrecision -> 70] (* _Vaclav Kotesovec_, Jan 19 2024 *)
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+x+x*sum(m=1,sqrtint(2*n)+1,(x*A+x*O(x^n))^(m*(m-1)/2)*(x^m+A^m)));polcoeff(A,n)}
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,q=x*(A+O(x^n));A=1+x*prod(m=0,n,(1+x*q^m)*(1+A*q^m)*(1-q^(m+1))) );polcoeff(A,n)}
%K nonn
%O 0,2
%A _Paul D. Hanna_, Jul 03 2011