login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323949
Number of set partitions of {1, ..., n} with no block containing three distinct cyclically successive vertices.
3
1, 1, 2, 4, 10, 36, 145, 631, 3015, 15563, 86144, 508311, 3180930, 21018999, 146111543, 1065040886, 8117566366, 64531949885, 533880211566, 4587373155544, 40865048111424, 376788283806743, 3590485953393739, 35312436594162173, 357995171351223109, 3736806713651177702
OFFSET
0,3
COMMENTS
Cyclically successive means 1 is a successor of n.
LINKS
EXAMPLE
The a(1) = 1 through a(4) = 10 set partitions:
{{1}} {{1,2}} {{1},{2,3}} {{1,2},{3,4}}
{{1},{2}} {{1,2},{3}} {{1,3},{2,4}}
{{1,3},{2}} {{1,4},{2,3}}
{{1},{2},{3}} {{1},{2},{3,4}}
{{1},{2,3},{4}}
{{1,2},{3},{4}}
{{1},{2,4},{3}}
{{1,3},{2},{4}}
{{1,4},{2},{3}}
{{1},{2},{3},{4}}
MATHEMATICA
spsu[_, {}]:={{}}; spsu[foo_, set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@spsu[Select[foo, Complement[#, Complement[set, s]]=={}&], Complement[set, s]]]/@Cases[foo, {i, ___}];
Table[Length[spsu[Select[Subsets[Range[n]], Select[Partition[Range[n], 3, 1, 1], Function[ed, UnsameQ@@ed&&Complement[ed, #]=={}]]=={}&], Range[n]]], {n, 8}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 10 2019
EXTENSIONS
a(12)-a(25) from Alois P. Heinz, Feb 10 2019
STATUS
approved