login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210773
Number of partitions of 2^n into powers of 2 less than or equal to 16.
2
1, 2, 4, 10, 36, 201, 1625, 17361, 222241, 3160641, 47594625, 738433281, 11633144321, 184687354881, 2943499290625, 47004182220801, 751333186150401, 12015464030289921, 192200500444954625, 3074832660977745921, 49194319991205396481, 787085099922532597761
OFFSET
0,2
LINKS
FORMULA
G.f.: (256*x^8-400*x^7-42*x^6-169*x^5-470*x^4+734*x^3-252*x^2+29*x-1) / Product_{j=0..4} (2^j*x-1).
a(n) = [x^2^(n-1)] 1/(1-x) * 1/Product_{j=0..3} (1-x^(2^j)) for n>0.
MAPLE
a:= n-> `if`(n<4, [1, 2, 4, 10][n+1], (Matrix(5, (i, j)-> `if`(i=j-1, 1, `if`(i=5, [1024, -1984, 1240, -310, 31][j], 0)))^(n-4). <<36, 201, 1625, 17361, 222241>>)[1, 1]): seq(a(n), n=0..30);
MATHEMATICA
LinearRecurrence[{31, -310, 1240, -1984, 1024}, {1, 2, 4, 10, 36, 201, 1625, 17361, 222241}, 30] (* Harvey P. Dale, Oct 02 2020 *)
CROSSREFS
Column k=4 of A152977.
Sequence in context: A243567 A323949 A066278 * A210774 A210775 A210776
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Mar 26 2012
STATUS
approved