The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A255127 Ludic array: square array A(row,col), where row n lists the numbers removed at stage n in the sieve which produces Ludic numbers. Array is read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ... 48
 2, 4, 3, 6, 9, 5, 8, 15, 19, 7, 10, 21, 35, 31, 11, 12, 27, 49, 59, 55, 13, 14, 33, 65, 85, 103, 73, 17, 16, 39, 79, 113, 151, 133, 101, 23, 18, 45, 95, 137, 203, 197, 187, 145, 25, 20, 51, 109, 163, 251, 263, 281, 271, 167, 29, 22, 57, 125, 191, 299, 325, 367, 403, 311, 205, 37, 24, 63, 139, 217, 343, 385, 461, 523, 457, 371, 253, 41 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS The starting offset of the sequence giving the terms of square array is 2. However, we can tacitly assume that a(1) = 1 when the sequence is used as a permutation of natural numbers. However, term 1 itself is out of the array. LINKS EXAMPLE The top left corner of the array:    2,   4,   6,   8,  10,  12,   14,   16,   18,   20,   22,   24,   26    3,   9,  15,  21,  27,  33,   39,   45,   51,   57,   63,   69,   75    5,  19,  35,  49,  65,  79,   95,  109,  125,  139,  155,  169,  185    7,  31,  59,  85, 113, 137,  163,  191,  217,  241,  269,  295,  323   11,  55, 103, 151, 203, 251,  299,  343,  391,  443,  491,  539,  587   13,  73, 133, 197, 263, 325,  385,  449,  511,  571,  641,  701,  761   17, 101, 187, 281, 367, 461,  547,  629,  721,  809,  901,  989, 1079   23, 145, 271, 403, 523, 655,  781,  911, 1037, 1157, 1289, 1417, 1543   25, 167, 311, 457, 599, 745,  883, 1033, 1181, 1321, 1469, 1615, 1753   29, 205, 371, 551, 719, 895, 1073, 1243, 1421, 1591, 1771, 1945, 2117 ... MATHEMATICA rows = 12; cols = 12; t = Range[2, 3000]; r = {1}; n = 1; While[n <= rows, k = First[t]; AppendTo[r, k]; t0 = t; t = Drop[t, {1, -1, k}]; ro[n++] = Complement[t0, t][[1 ;; cols]]]; A = Array[ro, rows]; Table[ A[[n - k + 1, k]], {n, 1, rows}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Mar 14 2016, after Ray Chandler *) PROG (Scheme) (define (A255127 n) (if (<= n 1) n (A255127bi (A002260 (- n 1)) (A004736 (- n 1))))) (define (A255127bi row col) ((rowfun_n_for_A255127 row) col)) ;; definec-macro memoizes its results: (definec (rowfun_n_for_A255127 n) (if (= 1 n) (lambda (n) (+ n n)) (let* ((rowfun_for_remaining (rowfun_n_for_remaining_numbers (- n 1))) (eka (rowfun_for_remaining 0))) (COMPOSE rowfun_for_remaining (lambda (n) (* eka (- n 1))))))) (definec (rowfun_n_for_remaining_numbers n) (if (= 1 n) (lambda (n) (+ n n 3)) (let* ((rowfun_for_prevrow (rowfun_n_for_remaining_numbers (- n 1))) (off (rowfun_for_prevrow 0))) (COMPOSE rowfun_for_prevrow (lambda (n) (+ 1 n (floor->exact (/ n (- off 1))))))))) CROSSREFS Transpose: A255129. Inverse: A255128. (When considered as a permutation of natural numbers with a(1) = 1). Cf. A260738 (index of the row where n occurs), A260739 (of the column). Main diagonal: A255410. Column 1: A003309 (without the initial 1). Column 2: A254100. Row 1: A005843, Row 2: A016945, Row 3: A255413, Row 4: A255414, Row 5: A255415, Row 6: A255416, Row 7: A255417, Row 8: A255418, Row 9: A255419. A192607 gives all the numbers right of the leftmost column, and A192506 gives the composites among them. Cf. A272565, A271419, A271420 and permutations A269379, A269380, A269384. Cf. also related or derived arrays A260717, A257257, A257258 (first differences of rows), A276610 (of columns), A276580. Analogous arrays for other sieves: A083221, A255551, A255543. Sequence in context: A163280 A056537 A293054 * A083221 A246278 A246366 Adjacent sequences:  A255124 A255125 A255126 * A255128 A255129 A255130 KEYWORD nonn,tabl,look AUTHOR Antti Karttunen, Feb 22 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 16:45 EDT 2021. Contains 347487 sequences. (Running on oeis4.)