login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056537
Mapping from the column-by-column reading to the half-antidiagonal reading of the triangular tables. Inverse of A056536.
5
1, 2, 4, 3, 6, 9, 5, 8, 12, 16, 7, 11, 15, 20, 25, 10, 14, 19, 24, 30, 36, 13, 18, 23, 29, 35, 42, 49, 17, 22, 28, 34, 41, 48, 56, 64, 21, 27, 33, 40, 47, 55, 63, 72, 81, 26, 32, 39, 46, 54, 62, 71, 80, 90, 100, 31, 38, 45, 53, 61, 70, 79, 89, 99, 110, 121, 37, 44, 52, 60, 69
OFFSET
1,2
COMMENTS
Moves triangular numbers (A000217) to squares (A000290), i.e., A056537(A000217(i)) = A000290(i) for i >= 1.
As a square array, this is the dispersion of the complement of the squares; see A082152. - Clark Kimberling, Apr 05 2003
FORMULA
Triangle T(n, k), 1<=k<=n, read by rows, defined by: T(n, k) = 0 for n<k and T(n, k) = A002620(n-k+1) + k*n + k - n if n>=k. T(n, n) = n^2; T(n, 1) = 1 + A002620(n) = A033638(n). - Philippe Deléham, Feb 16 2004
Square: t(n,k) = (n-1)(n+k) + k^2/4 + (1/8)(7+(-1)^k). - Clark Kimberling, Aug 08 2013
EXAMPLE
As a square array, a northwest corner:
1 ... 2 ... 3 ... 5 ... 7 ... 10
4 ... 6 ... 8 ... 11 .. 14 .. 18
9 ... 12 .. 15 .. 19 .. 23 .. 28
16 .. 20 .. 24 .. 29 .. 34 .. 40
25 .. 30 .. 35 .. 41 .. 47 .. 54
36 .. 42 .. 48 .. 55 .. 62 .. 70
49 .. 56 .. 63 .. 71 .. 79 .. 88
64 .. 72 .. 80 .. 89 .. 98 .. 108
- Clark Kimberling, Aug 08 2013
MAPLE
# using Maple procedure nthmember given in A054426:
[seq(nthmember(j, A056536), j=1..105)];
MATHEMATICA
(* Program generates the dispersion array T of the increasing sequence f[n] *)
r=40; r1=12; c=40; c1=12; f[n_] := n+Floor[1/2+Sqrt[n]] (* complement of column 1 *); mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]; rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, r1}, {j, 1, c1}]] (* A056537 array *)
Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A056537 sequence *)
(* Clark Kimberling, Jun 06 2011 *)
CROSSREFS
Cf. A185787 (dispersion of complement of triangular numbers).
Cf. A082152 (dispersion of complement of pentagonal numbers).
Sequence in context: A365230 A191711 A163280 * A293054 A359298 A255127
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Jun 20 2000
STATUS
approved