login
A056537
Mapping from the column-by-column reading to the half-antidiagonal reading of the triangular tables. Inverse of A056536.
5
1, 2, 4, 3, 6, 9, 5, 8, 12, 16, 7, 11, 15, 20, 25, 10, 14, 19, 24, 30, 36, 13, 18, 23, 29, 35, 42, 49, 17, 22, 28, 34, 41, 48, 56, 64, 21, 27, 33, 40, 47, 55, 63, 72, 81, 26, 32, 39, 46, 54, 62, 71, 80, 90, 100, 31, 38, 45, 53, 61, 70, 79, 89, 99, 110, 121, 37, 44, 52, 60, 69
OFFSET
1,2
COMMENTS
Moves triangular numbers (A000217) to squares (A000290), i.e., A056537(A000217(i)) = A000290(i) for i >= 1.
As a square array, this is the dispersion of the complement of the squares; see A082152. - Clark Kimberling, Apr 05 2003
FORMULA
Triangle T(n, k), 1<=k<=n, read by rows, defined by: T(n, k) = 0 for n<k and T(n, k) = A002620(n-k+1) + k*n + k - n if n>=k. T(n, n) = n^2; T(n, 1) = 1 + A002620(n) = A033638(n). - Philippe Deléham, Feb 16 2004
Square: t(n,k) = (n-1)(n+k) + k^2/4 + (1/8)(7+(-1)^k). - Clark Kimberling, Aug 08 2013
EXAMPLE
As a square array, a northwest corner:
1 ... 2 ... 3 ... 5 ... 7 ... 10
4 ... 6 ... 8 ... 11 .. 14 .. 18
9 ... 12 .. 15 .. 19 .. 23 .. 28
16 .. 20 .. 24 .. 29 .. 34 .. 40
25 .. 30 .. 35 .. 41 .. 47 .. 54
36 .. 42 .. 48 .. 55 .. 62 .. 70
49 .. 56 .. 63 .. 71 .. 79 .. 88
64 .. 72 .. 80 .. 89 .. 98 .. 108
- Clark Kimberling, Aug 08 2013
MAPLE
# using Maple procedure nthmember given in A054426:
[seq(nthmember(j, A056536), j=1..105)];
MATHEMATICA
(* Program generates the dispersion array T of the increasing sequence f[n] *)
r=40; r1=12; c=40; c1=12; f[n_] := n+Floor[1/2+Sqrt[n]] (* complement of column 1 *); mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]; rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, r1}, {j, 1, c1}]] (* A056537 array *)
Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A056537 sequence *)
(* Clark Kimberling, Jun 06 2011 *)
CROSSREFS
Cf. A185787 (dispersion of complement of triangular numbers).
Cf. A082152 (dispersion of complement of pentagonal numbers).
Sequence in context: A365230 A191711 A163280 * A293054 A359298 A255127
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Jun 20 2000
STATUS
approved