login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255125
Number of times a multiple of four is encountered when iterating from 2^(n+1)-2 to (2^n)-2 with the map x -> x - (number of runs in binary representation of x).
9
1, 0, 1, 1, 1, 3, 6, 13, 26, 47, 81, 140, 253, 482, 949, 1875, 3666, 7088, 13614, 26100, 50082, 96246, 185131, 356123, 684758, 1316197, 2530257, 4868019, 9378335, 18096921, 34974646, 67669905, 130998912, 253565649, 490501587, 947992195, 1830664188, 3533571444
OFFSET
0,6
COMMENTS
Also the number of even numbers in range [A255062(n) .. A255061(n+1)] of A255057 (equally, in A255067). See the sum-formulas.
FORMULA
a(n) = Sum_{k = A255062(n) .. A255061(n+1)} A059841(A255057(k)).
a(n) = Sum_{k = A255062(n) .. A255061(n+1)} A059841(A255067(k)).
a(n) = A255071(n) - A255126(n).
EXAMPLE
For n=5 we start iterating with map m(n) = A236840(n) from the initial value (2^(5+1))-2 = 62. Thus we get m(62) = 60, m(60) = 58, m(58) = 54, m(54) = 50, m(50) = 46, m(46) = 42, m(42) = 36, m(36) = 32 and finally m(32) = 30, which is (2^5)-2. Of the nine numbers encountered, only 60, 36 and 32 are multiples of four, thus a(5) = 3.
PROG
(PARI)
A005811(n) = hammingweight(bitxor(n, n\2));
write_A255125_and_A255126_and_A255071(n) = { my(k, i, s25, s26); k = (2^(n+1))-2; i = 1; s25 = 0; s26 = 0; while(1, if((k%4), s26++, s25++); k = k - A005811(k); if(!bitand(k+1, k+2), break, i++)); write("b255125.txt", n, " ", s25); write("b255126.txt", n, " ", s26); write("b255071.txt", n, " ", i); };
for(n=1, 42, write_A255125_and_A255126_and_A255071(n));
(Scheme) (define (A255125 n) (if (zero? n) 1 (let loop ((i (- (expt 2 (+ 1 n)) 4)) (s 0)) (cond ((pow2? (+ 2 i)) s) (else (loop (- i (A005811 i)) (+ s (A133872 i))))))))
;; Alternatively:
(define (A255125 n) (add (COMPOSE A059841 A255057) (A255062 n) (A255061 (+ 1 n))))
(define (A255125 n) (add (COMPOSE A059841 A255067) (A255062 n) (A255061 (+ 1 n))))
(define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 18 2015
STATUS
approved