login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255056
Trunk of number-of-runs beanstalk: The unique infinite sequence such that a(n-1) = a(n) - number of runs in binary representation of a(n).
33
0, 2, 4, 6, 10, 12, 14, 18, 22, 26, 28, 30, 32, 36, 42, 46, 50, 54, 58, 60, 62, 64, 68, 74, 78, 84, 90, 94, 96, 100, 106, 110, 114, 118, 122, 124, 126, 128, 132, 138, 142, 148, 152, 156, 162, 168, 174, 180, 186, 190, 192, 196, 202, 206, 212, 218, 222, 224, 228, 234, 238, 242, 246, 250, 252, 254
OFFSET
0,2
COMMENTS
All numbers of the form (2^n)-2 are present, which guarantees the uniqueness and also provides a well-defined method to compute the sequence, for example, via a partially reversed version A255066.
The sequence was inspired by a similar "binary weight beanstalk", A179016, sharing some general properties with it (like its partly self-copying behavior, see A255071), but also differing in some aspects. For example, here the branching degree is not the constant 2, but can vary from 1 to 4. (Cf. A255058.)
LINKS
FORMULA
a(n) = A255066(A255122(n)).
Other identities and observations. For all n >= 0:
a(n) = 2*A255057(n).
A255072(a(n)) = n.
A255053(n) <= a(n) <= A255055(n).
PROG
(Scheme) (define (A255056 n) (A255066 (A255122 n)))
CROSSREFS
First differences: A255336.
Terms halved: A255057.
Cf. A255053 & A255055 (the lower & upper bound for a(n)) and also A255123, A255124 (distances to those limits).
Cf. A255327, A255058 (branching degree for node n), A255330 (number of nodes in the finite subtrees branching from the node n), A255331, A255332
Subsequence: A000918 (except for -1).
Similar "beanstalk's trunk" sequences using some other subtracting map than A236840: A179016, A219648, A219666.
Sequence in context: A141104 A047410 A339331 * A164875 A301646 A024892
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Feb 14 2015
STATUS
approved