login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A255327
a(n) = 0 if n is in the infinite trunk of "number-of-runs beanstalk" (one of the terms of A255056), otherwise number of nodes (including leaves and the node n itself) in that finite subtree of the beanstalk.
11
0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 5, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 3, 1, 0, 1, 2, 1, 4, 1, 0, 1, 2, 1, 0, 1, 5, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 3, 1, 0, 1, 2, 1, 10, 1, 0, 1, 8, 1, 0, 1, 3, 1, 2, 1, 0, 1, 2, 1, 4, 1, 0, 1, 2, 1, 0, 1, 0, 1, 3, 1, 0, 1, 2, 1, 4, 1, 0, 1, 2, 1, 0, 1, 5, 1, 0, 1, 2, 1, 0
OFFSET
0,9
COMMENTS
The edge-relation between nodes is given by A236840(child) = parent. a(n) = 1 + the size of transitive closure of all children emanating from the parent at n. For any n in A255056 this would be infinite, thus such n are marked with zeros.
Odd numbers are leaves, as there are no such k that A236840(k) were odd, thus a(2n+1) = 1.
LINKS
FORMULA
a(2n+1) = 1, and for even numbers 2n, if A255339(n) = 1, then a(2n) = 0, otherwise, a(2n) = 1 + sum_{k = A091067(n) .. A255068(n)} a(k).
PROG
(Scheme, with memoization-macro definec)
(definec (A255327 n) (cond ((odd? n) 1) ((= 1 (A255339 (/ n 2))) 0) (else (+ 1 (add A255327 (A091067 (/ n 2)) (A255068 (/ n 2)))))))
;; Auxiliary function add implements sum_{i=lowlim..uplim} intfun(i)
(define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 21 2015
STATUS
approved