login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A208769 Dirichlet inverse of the finite group count (A000001). 1
1, -1, -1, -1, -1, 0, -1, -2, -1, 0, -1, 0, -1, 0, 1, -5, -1, 0, -1, 0, 0, 0, -1, -1, -1, 0, -2, 1, -1, 0, -1, -23, 1, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 1, 1, 0, -1, -8, -1, 0, 1, 0, -1, -1, 0, -1, 0, 0, -1, 0, -1, 0, 1, -159, 1, 0, -1, 0, 1, 0, -1, -6, -1, 0, 0, 1, 1, 0, -1, -10, -6, 0, -1, 1, 1, 0, 1, 0, -1, 0, 1, 1, 0, 0, 1, -60, -1, 0, 1, -2, -1, 0, -1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,8

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..2047 (computed from the b-file of A000001)

Wikipedia, Dirichlet convolution (Dirichlet inverse)

FORMULA

a(1) = 1; for n > 1, a(n) = -Sum_{d|n, d<n} A000001(n/d)*a(d). - Antti Karttunen, Jun 13 2018

MATHEMATICA

a[1] = 1; a[n_] := a[n] = -Sum[FiniteGroupCount[n/k] a[k], {k, Drop[Divisors[n], -1]}]; Table[a[n], {n, 100}]

PROG

(PARI)

v000001 = readvec("b000001_to.txt"); \\ Prepared with gawk ' { print $2 } ' from the b-file of A000001.

A000001(n) = v000001[1+n];

A208769(n) = if(1==n, 1, -sumdiv(n, d, if(d<n, A000001(n/d)*A208769(d), 0))); \\ Antti Karttunen, Jun 13 2018, after Mathematica-code

CROSSREFS

Cf. A129667 (abelian version), A000688, A000001, A185291.

Sequence in context: A073068 A166006 A330935 * A255327 A255391 A255396

Adjacent sequences:  A208766 A208767 A208768 * A208770 A208771 A208772

KEYWORD

sign,hard

AUTHOR

Ben Branman, Mar 01 2012

EXTENSIONS

More terms from Antti Karttunen, Jun 13 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 21 19:12 EDT 2021. Contains 345365 sequences. (Running on oeis4.)