login
A255329
a(n) = total number of nodes in the finite subtrees branching "right" (to the "larger side") from the node n in the infinite trunk of "number-of-runs beanstalk" (A255056).
8
0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 4, 1, 0, 0, 0, 0, 0, 1, 0, 4, 1, 0, 0, 1, 0, 0, 4, 1, 0, 0, 0, 0, 0, 1, 0, 4, 1, 0, 0, 1, 7, 1, 0, 3, 0, 1, 0, 0, 4, 1, 0, 0, 1, 0, 0, 4, 1, 0, 0, 0, 0, 0, 1, 0, 4, 1, 0, 0, 1, 7, 1, 0, 3, 0, 1, 7, 1, 0, 16, 0, 0, 1, 0, 3, 0, 1, 0, 0, 4, 1, 0, 0, 1, 7, 1, 0, 3, 0, 1, 0, 0, 4, 1, 0, 0, 1, 0, 0, 4, 1, 0, 0, 0, 0, 0, 1, 0, 4
OFFSET
0,12
LINKS
FORMULA
a(n) = sum_{k = A255056(n+1) .. A255068(A255057(n))} A255327(k).
a(n) = A255330(n) - A255328(n).
EXAMPLE
See example in A255330. Here we count only the nodes at the right side, thus a(11) = 1+3 = 4.
PROG
(Scheme) (define (A255329 n) (add A255327 (A255056 (+ n 1)) (A255068 (A255057 n))))
;; Other code as in A255327.
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 21 2015
STATUS
approved