OFFSET
0,14
COMMENTS
Row sums are A024493.
From R. J. Mathar, Mar 22 2013: (Start)
The matrix inverse starts
1;
0, 1;
0, 0, 1;
0, 0, -1, 1;
0, 0, 4, -4, 1;
0, 0, -40, 40, -10, 1;
0, 0, 796, -796, 199, -20, 1;
0, 0, -27580, 27580, -6895, 693, -35, 1;
... (End)
LINKS
Seiichi Manyama, Rows n = 0..139, flattened
FORMULA
Triangle T(n, k) = binomial(n, 3(n-k)).
EXAMPLE
Rows begin
{1},
{0,1},
{0,0,1},
{0,0,1,1},
{0,0,0,4,1},
{0,0,0,0,10,1},
...
MATHEMATICA
Table[Binomial[n, 3(n-k)], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 15 2019 *)
PROG
(PARI) {T(n, k) = binomial(n, 3*(n-k))}; \\ G. C. Greubel, Mar 15 2019
(Magma) [[Binomial(n, 3*(n-k)): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Mar 15 2019
(Sage) [[binomial(n, 3*(n-k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 15 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n, 3*(n-k)) ))); # G. C. Greubel, Mar 15 2019
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Aug 30 2004
STATUS
approved