login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098172
Triangle T(n,k) with diagonals T(n,n-k) = binomial(n,3k).
3
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 4, 1, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0, 1, 20, 1, 0, 0, 0, 0, 0, 7, 35, 1, 0, 0, 0, 0, 0, 0, 28, 56, 1, 0, 0, 0, 0, 0, 0, 1, 84, 84, 1, 0, 0, 0, 0, 0, 0, 0, 10, 210, 120, 1, 0, 0, 0, 0, 0, 0, 0, 0, 55, 462, 165, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 220, 924, 220, 1
OFFSET
0,14
COMMENTS
Row sums are A024493.
From R. J. Mathar, Mar 22 2013: (Start)
The matrix inverse starts
1;
0, 1;
0, 0, 1;
0, 0, -1, 1;
0, 0, 4, -4, 1;
0, 0, -40, 40, -10, 1;
0, 0, 796, -796, 199, -20, 1;
0, 0, -27580, 27580, -6895, 693, -35, 1;
... (End)
LINKS
FORMULA
Triangle T(n, k) = binomial(n, 3(n-k)).
EXAMPLE
Rows begin
{1},
{0,1},
{0,0,1},
{0,0,1,1},
{0,0,0,4,1},
{0,0,0,0,10,1},
...
MATHEMATICA
Table[Binomial[n, 3(n-k)], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 15 2019 *)
PROG
(PARI) {T(n, k) = binomial(n, 3*(n-k))}; \\ G. C. Greubel, Mar 15 2019
(Magma) [[Binomial(n, 3*(n-k)): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Mar 15 2019
(Sage) [[binomial(n, 3*(n-k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 15 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n, 3*(n-k)) ))); # G. C. Greubel, Mar 15 2019
CROSSREFS
Cf. A098158.
Sequence in context: A255329 A365949 A127560 * A049759 A355829 A265421
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Aug 30 2004
STATUS
approved