login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A355829
Dirichlet inverse of A009194, the greatest common divisor of sigma(n) and n, where sigma is the sum of divisors function.
2
1, -1, -1, 0, -1, -4, -1, 0, 0, 0, -1, 7, -1, 0, -1, 0, -1, 8, -1, 1, 1, 0, -1, -10, 0, 0, 0, -25, -1, 10, -1, 0, -1, 0, 1, 15, -1, 0, 1, -8, -1, 6, -1, -1, 2, 0, -1, 16, 0, 2, -1, 1, -1, -6, 1, 46, 1, 0, -1, -9, -1, 0, 0, 0, 1, 10, -1, 1, -1, 2, -1, -29, -1, 0, 4, -1, 1, 6, -1, 16, 0, 0, -1, 29, 1, 0, -1, 2, -1, -8
OFFSET
1,6
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A009194(n/d) * a(d).
MATHEMATICA
s[n_] := GCD[n, DivisorSigma[1, n]]; a[1] = 1; a[n_] := - DivisorSum[n, a[#] * s[n/#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jul 20 2022 *)
PROG
(PARI)
A009194(n) = gcd(n, sigma(n));
memoA355829 = Map();
A355829(n) = if(1==n, 1, my(v); if(mapisdefined(memoA355829, n, &v), v, v = -sumdiv(n, d, if(d<n, A009194(n/d)*A355829(d), 0)); mapput(memoA355829, n, v); (v)));
CROSSREFS
Cf. also A355828.
Sequence in context: A127560 A098172 A049759 * A265421 A137252 A228623
KEYWORD
sign
AUTHOR
Antti Karttunen, Jul 20 2022
STATUS
approved