login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355831
Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j) and A354347(i) = A354347(j) for all i, j >= 1.
4
1, 2, 2, 3, 2, 4, 2, 5, 6, 4, 2, 7, 2, 4, 4, 8, 2, 9, 2, 7, 10, 4, 2, 11, 12, 10, 13, 7, 2, 14, 2, 15, 4, 4, 16, 17, 2, 4, 4, 18, 2, 19, 2, 20, 21, 10, 2, 22, 6, 23, 10, 24, 2, 25, 4, 18, 4, 4, 2, 26, 2, 4, 27, 28, 16, 14, 2, 7, 4, 29, 2, 30, 2, 4, 31, 32, 16, 19, 2, 33, 34, 4, 2, 35, 4, 10, 4, 36, 2, 37, 4, 38, 4, 39, 16, 40, 2, 41, 21, 42, 2, 43, 2, 44, 45
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of the ordered pair [A046523(n), A354347(n)].
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A345000(n) = gcd(A003415(n), A003415(A276086(n)));
v354347 = DirInverseCorrect(vector(up_to, n, A345000(n)));
A354347(n) = v354347[n];
Aux355831(n) = [A046523(n), A354347(n)];
v355831 = rgs_transform(vector(up_to, n, Aux355831(n)));
A355831(n) = v355831[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 20 2022
STATUS
approved