OFFSET
1,2
COMMENTS
Restricted growth sequence transform of A291757, which means that this is the lexicographically least sequence a, such that for all i, j: a(i) = a(j) <=> A291757(i) = A291757(j) <=> A003557(i) = A003557(j) and A046523(i) = A046523(j). That this is equal to the definition given in the title follows because any such lexicographically least sequence satisfying relation <=> is also the least sequence satisfying relation => with the same parameters.
Also the restricted growth sequence transform of A294876, Product_{d|n, d>1} prime(gcd(d,n/d)). (This was the original definition).
For all i, j:
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A294876(n) = { my(m=1); fordiv(n, d, if(d>1, m *= prime(gcd(d, n/d)))); m; };
v294877 = rgs_transform(vector(up_to, n, A294876(n)));
A294877(n) = v294877[n];
(PARI)
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A294877(n) = v294877[n]; \\ Antti Karttunen, Nov 28 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 11 2017
EXTENSIONS
Name changed and comments added by Antti Karttunen, Nov 28 2018
STATUS
approved