login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294874
a(n) = Product_{d|n, d>1, d = x^(2k) for some maximal k} prime(k).
4
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 6, 1, 1, 1, 8, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 6, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 30, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 6, 6, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 6, 1, 2, 2, 8, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 1, 6, 1, 1, 1, 2, 2, 1, 1, 2
OFFSET
1,4
FORMULA
a(n) = Product_{d|n, d>1, r = A052409(d) is even} A000040(r/2).
Other identities. For all n >= 1:
A001222(a(n)) = A071325(n).
1 + A001222(a(n)) = A046951(n).
EXAMPLE
For n = 36, it has three square-divisors: 4 = 2^(2*1), 9 = 3^(2*1) and 36 = 6^(2*1). Thus a(36) = prime(1) * prime(1) * prime(1) = 2*2*2 = 8.
For n = 64, it has three square-divisors: 4 = 2^(2*1), 16 = 2^(2*2) and 64 = 2^(2*3). Thus a(64) = prime(1) * prime(2) * prime(3) = 2*3*5 = 30.
PROG
(PARI) A294874(n) = { my(m=1, e); fordiv(n, d, if(d>1, e = ispower(d); if((e>1)&&!(e%2), m *= prime(e/2)))); m; };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 11 2017
STATUS
approved