login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294871
Solution of the complementary equation a(n) = 2*a(n-1) - a(n-2) + b(n-1) + 3, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
2
1, 2, 10, 26, 51, 86, 132, 190, 262, 349, 452, 572, 710, 867, 1044, 1242, 1462, 1705, 1972, 2264, 2582, 2927, 3300, 3703, 4137, 4603, 5102, 5635, 6203, 6807, 7448, 8127, 8845, 9603, 10402, 11243, 12127, 13055, 14028, 15047, 16113, 17227, 18390, 19603, 20867
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294860 for a guide to related sequences.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 2, b(0) = 3
b(1) = 4 (least "new number")
a(2) = 2*a(1) - a(0) + b(1) + 3 = 10
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, ...)
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 2; b[0] = 3;
a[n_] := a[n] = 2 a[n - 1] - a[n - 2] + b[n - 1] + 3;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A294871 *)
Table[b[n], {n, 0, 10}]
CROSSREFS
Cf. A294860.
Sequence in context: A374180 A069894 A045605 * A212969 A277712 A009307
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 18 2017
STATUS
approved