OFFSET
0,3
COMMENTS
For a guide to related sequences, see A212959.
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
FORMULA
a(n) = (n-1)*(2*n*(7*n-2) - 3*(-1)^n + 3)/24.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: f(x)/g(x), where f(x) = 2*(x^2)*(1 + 3*x + 2*x^2 + x^3) and g(x) = ((1-x)^4)*(1+x)^2.
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w != x > (Max[w, x, y] - Min[w, x, y]),
s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 60]] (* A212969 *)
m/2 (* integers *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 02 2012
STATUS
approved