login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131130
Binomial transform of [1,1,7,1,7,1,7,1,...].
11
1, 2, 10, 26, 58, 122, 250, 506, 1018, 2042, 4090, 8186, 16378, 32762, 65530, 131066, 262138, 524282, 1048570, 2097146, 4194298, 8388602, 16777210, 33554426, 67108858, 134217722, 268435450, 536870906, 1073741818, 2147483642
OFFSET
0,2
COMMENTS
For n >= 3, number of vertices of 4,4'-bipyridinium dendrimers (see the Arjomanfar and Gholami reference, p. 71). - Emeric Deutsch, Apr 12 2015
Number of ways to color a (2n-1) X (2n-1) chess board in a "balanced" way. A coloring is called balanced if, within every square subgrid made up of k^2 cells for 1 <= k <= 2*n-1, the number of black cells differs from the number of white cells by at most one. It is problem 3 from the British Maths Olympiad 2020. - Ruediger Jehn, Jan 27 2021
LINKS
A. Arjomanfar and N. Gholami, Computing the Szeged index of 4,4'-bipyridinium dendrimer, Iranian J. Math. Chem., 3, 2012, 67-72.
British Mathematical Olympiad, 2020 - Round 2, Problem 3.
FORMULA
Row sums of triangle A131131.
a(n) = 4*2^n - 6 for n >= 1; a(0)=1.
From Philippe Deléham, Jan 04 2009: (Start)
a(n) = 3*a(n-1) - 2*a(n-2), n > 2; a(0)=1, a(1)=2, a(2)=10.
G.f.: (1-x+6*x^2) / (1-3*x+2*x^2). (End)
a(n) = 2*a(n-1) + 6 for n > 1, a(0)=1, a(1)=2. - Philippe Deléham, Sep 25 2009
E.g.f.: 3 - 6*exp(x) + 4*exp(2*x). - Stefano Spezia, Feb 05 2021
MAPLE
1, seq(4*2^n -6, n = 1..30);
MATHEMATICA
Join[{1}, LinearRecurrence[{3, -2}, {2, 10}, 30]] (* Harvey P. Dale, Mar 07 2014 *)
CoefficientList[Series[(1 -x +6x^2)/(1 -3x +2x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 08 2014 *)
CROSSREFS
Cf. A095121 (bin transf 1,1,3,1,3,...), A131128 (bin transf 1,1,5,1,5,..), A131131.
Sequence in context: A212969 A277712 A009307 * A099969 A241688 A183331
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jun 16 2007
EXTENSIONS
Edited by Emeric Deutsch, Jul 12 2007
STATUS
approved