Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #61 Apr 13 2024 07:58:14
%S 1,2,10,26,58,122,250,506,1018,2042,4090,8186,16378,32762,65530,
%T 131066,262138,524282,1048570,2097146,4194298,8388602,16777210,
%U 33554426,67108858,134217722,268435450,536870906,1073741818,2147483642
%N Binomial transform of [1,1,7,1,7,1,7,1,...].
%C For n >= 3, number of vertices of 4,4'-bipyridinium dendrimers (see the Arjomanfar and Gholami reference, p. 71). - _Emeric Deutsch_, Apr 12 2015
%C Number of ways to color a (2n-1) X (2n-1) chess board in a "balanced" way. A coloring is called balanced if, within every square subgrid made up of k^2 cells for 1 <= k <= 2*n-1, the number of black cells differs from the number of white cells by at most one. It is problem 3 from the British Maths Olympiad 2020. - _Ruediger Jehn_, Jan 27 2021
%H Vincenzo Librandi, <a href="/A131130/b131130.txt">Table of n, a(n) for n = 0..1000</a>
%H A. Arjomanfar and N. Gholami, <a href="http://ijmc.kashanu.ac.ir/article_5219_853.html">Computing the Szeged index of 4,4'-bipyridinium dendrimer</a>, Iranian J. Math. Chem., 3, 2012, 67-72.
%H British Mathematical Olympiad, <a href="https://bmos.ukmt.org.uk/home/bmo2-2020.pdf">2020 - Round 2</a>, Problem 3.
%H <a href="/index/O#Olympiads">Index to sequences related to Olympiads</a>.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2).
%F Row sums of triangle A131131.
%F a(n) = 4*2^n - 6 for n >= 1; a(0)=1.
%F From _Philippe Deléham_, Jan 04 2009: (Start)
%F a(n) = 3*a(n-1) - 2*a(n-2), n > 2; a(0)=1, a(1)=2, a(2)=10.
%F G.f.: (1-x+6*x^2) / (1-3*x+2*x^2). (End)
%F a(n) = 2*a(n-1) + 6 for n > 1, a(0)=1, a(1)=2. - _Philippe Deléham_, Sep 25 2009
%F E.g.f.: 3 - 6*exp(x) + 4*exp(2*x). - _Stefano Spezia_, Feb 05 2021
%p 1, seq(4*2^n -6, n = 1..30);
%t Join[{1},LinearRecurrence[{3,-2},{2,10},30]] (* _Harvey P. Dale_, Mar 07 2014 *)
%t CoefficientList[Series[(1 -x +6x^2)/(1 -3x +2x^2), {x, 0, 40}], x] (* _Vincenzo Librandi_, Mar 08 2014 *)
%Y Cf. A095121 (bin transf 1,1,3,1,3,...), A131128 (bin transf 1,1,5,1,5,..), A131131.
%K nonn,easy
%O 0,2
%A _Gary W. Adamson_, Jun 16 2007
%E Edited by _Emeric Deutsch_, Jul 12 2007