login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131129
3*A007318 - 2*A097806, where A007318 = Pascal's triangle and A097806 = the pairwise operator.
2
1, 1, 1, 3, 4, 1, 3, 9, 7, 1, 3, 12, 18, 10, 1, 3, 15, 30, 30, 13, 1, 3, 18, 45, 60, 45, 16, 1, 3, 21, 63, 105, 105, 63, 19, 1, 3, 24, 84, 168, 210, 168, 84, 22, 1
OFFSET
0,4
COMMENTS
Row sums = A131128: (1, 2, 8, 20, 44, 92, 188, 380, ...), the binomial transform of (1, 1, 5, 1, 5, 1, 5, ...). Triangle A131108 has row sums (1, 2, 6, 14, 30, 62, ...), the binomial transform of (1, 1, 3, 1, 3, 1, ...). Generalization: Given triangles generated from N*A007318 - (N-1)*A097806, row sums are binomial transforms of (1, 1, (2N-1), 1, (2N-1), 1, ...).
Triangle T(n,k), 0 <= k <= n, read by rows given by [1,2,-3,1,0,0,0,0,0,0,0,...] DELTA [1,0,0,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 18 2007
FORMULA
G.f.: (1-x*y+2*x^2+2*x^2*y)/((-1+x+x*y)*(x*y-1)). - R. J. Mathar, Aug 12 2015
EXAMPLE
First few rows of the triangle:
1;
1, 1;
3, 4, 1;
3, 9, 7, 1;
3, 12, 18, 10, 1;
3, 15, 30, 30, 13, 1;
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jun 16 2007
STATUS
approved