login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131132
a(n) = a(n-1) + a(n-2) + 1 if n is a multiple of 6, otherwise a(n) = a(n-1) + a(n-2).
3
1, 1, 2, 3, 5, 8, 14, 22, 36, 58, 94, 152, 247, 399, 646, 1045, 1691, 2736, 4428, 7164, 11592, 18756, 30348, 49104, 79453, 128557, 208010, 336567, 544577, 881144, 1425722, 2306866, 3732588, 6039454, 9772042, 15811496, 25583539, 41395035, 66978574, 108373609
OFFSET
0,3
COMMENTS
Also: convolution of A000045 with the period-6 sequence (0,0,0,0,0,0, 1,...). - R. J. Mathar, May 30 2008
Sequences of the form s(0)=a, s(1)= b, s(n) = s(n-1) + s(n-2) + k if n mod m = p, else s(n) = s(n-1) + s(n-2) have a form s(n) = fibonacci(n-1)*a + fibonacci(n)*b + P(x)*k. a(n) is the P(x) sequence for m=6. s(n) = fib(n)*a + fib(n-1)*b + a(n-6-p)*k. - Gary Detlefs, Dec 05 2010
a(n) is the number of compositions of n where the order of the 2 and the 3 does not matter. - Gregory L. Simay, May 18 2017
LINKS
H. Matsui et al., Problem B-1035, Fibonacci Quarterly, Vol. 45, Number 2; 2007; p. 182.
FORMULA
O.g.f.: 1/((1-x^6)(1 - x - x^2)). - R. J. Mathar, May 30 2008
a(n) = ((-1)^n-1)/6 + A099837(n+3)/12 + A000045(n+4)/4 + A057079(n)/12. - R. J. Mathar, Dec 07 2010
a(n) = floor(A066983(n+4)/3). - Gary Detlefs, Dec 19 2010
a(n) = round((1 + sqrt(5))/8 A000045(n+3)). - John M. Campbell, Jul 06 2016
a(n) = (number of compositions of n consisting of only 1 or 2 or 6) - (number of compositions with only 7 or ((1 or 2) and 7)) - (number of compositions with only 8 or ((1 or 2) and 8)). The "or" is inclusive. - Gregory L. Simay, May 25 2017
EXAMPLE
Since 5 is not a multiple of 6, a(5) = a(4) + a(3) = 5 + 3 = 8. Since 6 is a multiple of 6, a(6) = a(5) + a(4) + 1 = 8 + 5 + 1 = 14. - Michael B. Porter, Jul 26 2016
MAPLE
A131132:=proc(n) option remember; local t1; if n <= 2 then RETURN(1); fi: if n mod 6 = 1 then t1:=1 else t1:=0; fi: procname(n-1)+procname(n-2)+t1; end; [seq(A131132(n), n=1..100)]; # N. J. A. Sloane, May 25 2008; Typo corrected by R. J. Mathar, May 30 2008
MATHEMATICA
Print[Table[Round[(1 + Sqrt[5])/8 Fibonacci[n + 3]], {n, 0, 50}]] ;
Print[RecurrenceTable[{c[n] == c[n - 1] + c[n - 2] + c[n - 6] - c[n - 7] - c[n - 8], c[0] == 1, c[1] == 1, c[2] == 2, c[3] == 3, c[4] == 5, c[5] == 8, c[6] == 14, c[7] == 22}, c, {n, 0, 50}]] ; (* John M. Campbell, Jul 07 2016 *)
LinearRecurrence[{1, 1, 0, 0, 0, 1, -1, -1}, {1, 1, 2, 3, 5, 8, 14, 22}, 40] (* Vincenzo Librandi, Jul 07 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 25 2008
EXTENSIONS
More specific name from R. J. Mathar, Dec 09 2009
STATUS
approved