login
A318324
Denominators of rational valued sequence whose Dirichlet convolution with itself yields A046523, smallest number with same prime signature as n.
2
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 8, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 8, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 16, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 8, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 2, 4, 1, 1, 1, 1, 1
OFFSET
1,4
LINKS
FORMULA
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A046523(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
PROG
(PARI)
up_to = 16384;
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
v318323_24 = DirSqrt(vector(up_to, n, A046523(n)));
A318324(n) = denominator(v318323_24[n]);
CROSSREFS
Cf. A046523, A318323 (numerators).
Sequence in context: A363265 A347456 A294874 * A317934 A353376 A279848
KEYWORD
nonn,frac
AUTHOR
Antti Karttunen, Aug 24 2018
STATUS
approved