login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071325
Number of squares > 1 dividing n.
7
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0
OFFSET
1,16
FORMULA
a(n) = A046951(n) - 1.
A057427(a(n)) = 1 - A008966(n).
G.f.: Sum_{k>=2} x^(k^2)/(1 - x^(k^2)). - Ilya Gutkovskiy, Jan 04 2017
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi^2/6 - 1. - Amiram Eldar, Sep 25 2022
MATHEMATICA
a[n_] := DivisorSum[n, Boole[#>1 && IntegerQ[Sqrt[#]]]&]
Array[a, 100] (* Jean-François Alcover, Dec 10 2021 *)
PROG
(PARI) a(n) = sumdiv(n, d, issquare(d) && (d>1)); \\ Michel Marcus, Jan 04 2017
(Python)
from math import prod
from sympy import factorint
def A071325(n): return prod((e>>1)+1 for e in factorint(n).values())-1 # Chai Wah Wu, Oct 06 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 18 2002
STATUS
approved