login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{d|n, d>1, d = x^(2k) for some maximal k} prime(k).
4

%I #11 Nov 13 2017 13:22:18

%S 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,6,1,2,1,2,1,1,1,2,2,1,2,2,1,1,1,6,1,1,

%T 1,8,1,1,1,2,1,1,1,2,2,1,1,6,2,2,1,2,1,2,1,2,1,1,1,2,1,1,2,30,1,1,1,2,

%U 1,1,1,8,1,1,2,2,1,1,1,6,6,1,1,2,1,1,1,2,1,2,1,2,1,1,1,6,1,2,2,8,1,1,1,2,1,1,1,8,1,1,1,6,1,1,1,2,2,1,1,2

%N a(n) = Product_{d|n, d>1, d = x^(2k) for some maximal k} prime(k).

%H Antti Karttunen, <a href="/A294874/b294874.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>

%F a(n) = Product_{d|n, d>1, r = A052409(d) is even} A000040(r/2).

%F Other identities. For all n >= 1:

%F A001222(a(n)) = A071325(n).

%F 1 + A001222(a(n)) = A046951(n).

%e For n = 36, it has three square-divisors: 4 = 2^(2*1), 9 = 3^(2*1) and 36 = 6^(2*1). Thus a(36) = prime(1) * prime(1) * prime(1) = 2*2*2 = 8.

%e For n = 64, it has three square-divisors: 4 = 2^(2*1), 16 = 2^(2*2) and 64 = 2^(2*3). Thus a(64) = prime(1) * prime(2) * prime(3) = 2*3*5 = 30.

%o (PARI) A294874(n) = { my(m=1,e); fordiv(n,d, if(d>1, e = ispower(d); if((e>1)&&!(e%2), m *= prime(e/2)))); m; };

%Y Cf. A000040, A046951, A052409, A071325.

%Y Cf. A293524, A294873, A294875.

%K nonn

%O 1,4

%A _Antti Karttunen_, Nov 11 2017