login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355828
Dirichlet inverse of A342671, the greatest common divisor of sigma(n) and A003961(n), where A003961 is fully multiplicative with a(p) = nextprime(p).
4
1, -3, -1, 8, -1, 3, -1, -24, 0, 3, -1, -8, -1, 3, 1, 72, -1, 0, -1, -28, 1, 3, -1, 12, 0, 3, -4, -8, -1, -3, -1, -222, 1, 3, 1, 0, -1, 3, 1, 138, -1, -3, -1, -10, 0, 3, -1, 0, 0, 0, 1, -8, -1, 12, 1, 24, -3, 3, -1, 28, -1, 3, 0, 684, -5, -3, -1, -16, 1, -3, -1, 12, -1, 3, 0, -8, 1, -3, -1, -538, 8, 3, -1, 8, 1, 3, -3, 30
OFFSET
1,2
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A342671(n/d) * a(d).
MATHEMATICA
f[p_, e_] := NextPrime[p]^e; s[n_] := GCD[DivisorSigma[1, n], Times @@ f @@@ FactorInteger[n]]; a[1] = 1; a[n_] := - DivisorSum[n, a[#] * s[n/#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jul 20 2022 *)
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A342671(n) = gcd(sigma(n), A003961(n));
memoA355828 = Map();
A355828(n) = if(1==n, 1, my(v); if(mapisdefined(memoA355828, n, &v), v, v = -sumdiv(n, d, if(d<n, A342671(n/d)*A355828(d), 0)); mapput(memoA355828, n, v); (v)));
CROSSREFS
Cf. also A355829.
Sequence in context: A331187 A154294 A059526 * A091839 A155789 A179393
KEYWORD
sign
AUTHOR
Antti Karttunen, Jul 20 2022
STATUS
approved