login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) with diagonals T(n,n-k) = binomial(n,3k).
3

%I #22 Sep 08 2022 08:45:14

%S 1,0,1,0,0,1,0,0,1,1,0,0,0,4,1,0,0,0,0,10,1,0,0,0,0,1,20,1,0,0,0,0,0,

%T 7,35,1,0,0,0,0,0,0,28,56,1,0,0,0,0,0,0,1,84,84,1,0,0,0,0,0,0,0,10,

%U 210,120,1,0,0,0,0,0,0,0,0,55,462,165,1,0,0,0,0,0,0,0,0,1,220,924,220,1

%N Triangle T(n,k) with diagonals T(n,n-k) = binomial(n,3k).

%C Row sums are A024493.

%C From _R. J. Mathar_, Mar 22 2013: (Start)

%C The matrix inverse starts

%C 1;

%C 0, 1;

%C 0, 0, 1;

%C 0, 0, -1, 1;

%C 0, 0, 4, -4, 1;

%C 0, 0, -40, 40, -10, 1;

%C 0, 0, 796, -796, 199, -20, 1;

%C 0, 0, -27580, 27580, -6895, 693, -35, 1;

%C ... (End)

%H Seiichi Manyama, <a href="/A098172/b098172.txt">Rows n = 0..139, flattened</a>

%F Triangle T(n, k) = binomial(n, 3(n-k)).

%e Rows begin

%e {1},

%e {0,1},

%e {0,0,1},

%e {0,0,1,1},

%e {0,0,0,4,1},

%e {0,0,0,0,10,1},

%e ...

%t Table[Binomial[n, 3(n-k)], {n, 0, 12}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Mar 15 2019 *)

%o (PARI) {T(n, k) = binomial(n, 3*(n-k))}; \\ _G. C. Greubel_, Mar 15 2019

%o (Magma) [[Binomial(n, 3*(n-k)): k in [0..n]]: n in [0..12]]; // _G. C. Greubel_, Mar 15 2019

%o (Sage) [[binomial(n, 3*(n-k)) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Mar 15 2019

%o (GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n, 3*(n-k)) ))); # _G. C. Greubel_, Mar 15 2019

%Y Cf. A098158.

%K easy,nonn,tabl

%O 0,14

%A _Paul Barry_, Aug 30 2004