%I #7 Feb 21 2015 15:37:58
%S 0,1,0,0,1,0,0,0,0,1,0,4,1,0,0,0,0,0,1,0,4,1,0,0,1,0,0,4,1,0,0,0,0,0,
%T 1,0,4,1,0,0,1,7,1,0,3,0,1,0,0,4,1,0,0,1,0,0,4,1,0,0,0,0,0,1,0,4,1,0,
%U 0,1,7,1,0,3,0,1,7,1,0,16,0,0,1,0,3,0,1,0,0,4,1,0,0,1,7,1,0,3,0,1,0,0,4,1,0,0,1,0,0,4,1,0,0,0,0,0,1,0,4
%N a(n) = total number of nodes in the finite subtrees branching "right" (to the "larger side") from the node n in the infinite trunk of "number-of-runs beanstalk" (A255056).
%H Antti Karttunen, <a href="/A255329/b255329.txt">Table of n, a(n) for n = 0..8590</a>
%F a(n) = sum_{k = A255056(n+1) .. A255068(A255057(n))} A255327(k).
%F a(n) = A255330(n) - A255328(n).
%e See example in A255330. Here we count only the nodes at the right side, thus a(11) = 1+3 = 4.
%o (Scheme) (define (A255329 n) (add A255327 (A255056 (+ n 1)) (A255068 (A255057 n))))
%o ;; Other code as in A255327.
%Y Cf. A255056, A255057, A255327, A255328, A255330, A255331.
%K nonn
%O 0,12
%A _Antti Karttunen_, Feb 21 2015