login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255061
Number of steps to reach 0 when starting from (2^n)-2 and iterating the map x -> x - (number of runs in binary representation of x): a(n) = A255072(A000918(n)).
17
0, 1, 3, 6, 11, 20, 36, 65, 118, 215, 393, 721, 1329, 2463, 4589, 8590, 16142, 30434, 57549, 109114, 207388, 395045, 754027, 1441971, 2762764, 5303466, 10200385, 19656528, 37948281, 73384080, 142115376, 275551755, 534790472, 1038702980, 2018626772, 3924923937, 7634733312
OFFSET
1,3
COMMENTS
Apart from a(1)=1, also gives the positions of ones in A255054.
FORMULA
a(n) = A255072(A000918(n)).
a(1) = 0; for n > 1, a(n) = a(n-1) + A255071(n-1).
Other identities. For all n >= 1:
a(n) = A255062(n) - 1.
PROG
(Scheme)
(define (A255061 n) (A255072 (A000918 n)))
(define (A255061 n) (if (= 1 n) 0 (+ (A255061 (- n 1)) (A255071 (- n 1))))) ;; Assuming that A255071 has been already computed, with e.g. the PARI-program given in that entry.
CROSSREFS
One less than A255062.
First differences: A255071.
Apart from a(1)=1, a subsequence of A255059.
Analogous sequences: A218600, A226061.
Sequence in context: A054887 A019302 A119861 * A018075 A125896 A265077
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 14 2015
STATUS
approved