login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A267367
Decimal representation of the middle column of the "Rule 126" elementary cellular automaton starting with a single ON (black) cell.
2
1, 3, 6, 13, 26, 52, 104, 209, 418, 836, 1672, 3344, 6688, 13376, 26752, 53505, 107010, 214020, 428040, 856080, 1712160, 3424320, 6848640, 13697280, 27394560, 54789120, 109578240, 219156480, 438312960, 876625920, 1753251840, 3506503681, 7013007362
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
MAPLE
A267367 := proc(n) local i, s, z; s := 0; i := n; z := 1;
while 0 <= i do s := s+2^i; i := i-z; z := z+z od; s end:
seq(A267367(n), n=0..32); # Peter Luschny, Dec 02 2017
MATHEMATICA
rule=126; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]], {k, 1, rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc, k], 2], {k, 1, rows}] (* Binary Representation of Middle Column *)
PROG
(Python)
def A267367(n):
i, s, z = n, 0, 1
while 0 <= i: s += 1<<i; i -= z; z += z
return s
print([A267367(n) for n in range(33)]) # Peter Luschny, Dec 02 2017
CROSSREFS
Cf. A267366 (binary), A001855, A071035, A267365.
Sequence in context: A032198 A079941 A255125 * A265385 A019300 A072762
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 13 2016
STATUS
approved